

Effective Autonomous Driving with Sensor Fusion

Robert-Zsolt Kabai

Team Lead, Deep Learning for Point Cloud and Fusion Machine Learning Methods ADAS Budapest – Deep Learning Competence Center – Continental

Autonomous Mobility and Safety | Advanced Driver Assistance Systems

SensePlanAct

- **1** Technical challenges of perception
- 2 Al solutions with Sensor Fusion
- **3** Budapest Fusion AI developments

Technical challenges of perception

Title Public 15 April 2021 Robert-Zsolt Kabai, © Continental AG

3

Market overview

Sensor Market projections (Goldman Sachs Investment Research)

🛈 ntinental 🏂 🛛

Key LIDAR requirements for Autonomous Driving

• A cost-effective product ticking all AD requirements could lead the market.

Solid-State Pros/Cons:

- + global shutter
- low resolution
- + high framerate
- range (HFL)

+ cheap

+ range

+ no moving parts

Scanning (e.g. Velodyne) Pros/Cons:

- + high resolution
- rolling shutter
- low framerate
- expensive
- moving parts

Cheaper LIDARs are relatively low resolution

• Functions like Object Detection are challenging with current Solid State LIDAR resolution

Expensive

Rotating LIDAR

Al solutions with Sensor Fusion

Title Public 15 April 2021 Robert-Zsolt Kabai, © Continental AG

7

LIDAR resolution upscaling using AI

Fusion based 3D Reconstruction

- Sensor Fusion
 - Low resolution LIDAR measurements
 - High resolution camera measurements
- 3D Reconstruction
 - Correct perspective change induced artifacts e.g. object occlusion shift
 - Predict 3D position of pixels by high resolution densified ground truth LIDAR fused with image based texture change and object edges boundaries
 - Get reconstructed 3D scene described by high resolution RGB colored LIDAR point cloud

Fusion based 3D Reconstruction opportunities

Fusion based 3D Reconstruction opportunities

Three pillars of successful 3D Reconstruction

Data selection for fusion

- •Identify scenes best suited for 3D Reconstruction
- •Can use **wide range of data** without annotation requirements
- •High density, low dynamic object speed to reduce motion artifacts e.g. parking, intersections

Algorithmic groundtruth generation

- No semantic manual annotation needed!
- Scalable process instead: algorithmic, fusion-tailored, multilidar and time-based dense LIDAR ground truth generation
- Cheap data acquisition including training-ready ground truth, reusable data from wide range of recordings

Network Architecture

- Specialized network architecture for 3D Reconstruction
- Downstream tasks and 3D Reconstruction ability trainable separately with task specific data
- Scene 3D reconstruction reliability and stability can be validated and proven separately
- Robust, low-risk, detached development; extra flexibility for downstream task developer (free to use point cloud or depth map)

Budapest Fusion AI developments

Title Public 15 April 2021 Robert-Zsolt Kabai, © Continental AG

12

Concept details

Inference time setup

3D view of point clouds

3D view of point clouds – a closer look

LIDAR Ground-truth generat

^DProβrietary Ground Truth densification algorithm

 More accurate and much more dense compared to public KITTI version

15 April 2021 Robert-Zsolt Kabai, © Continental AG

Title Public

Demo – Comparison with Vision-only models

Vision-only Supervised	
RMSE	100%
[DORN, Fu et al. 2018]	

3D Object Detection enhanced with Fusion

Title Public

Summary

Scope:

 Creating up to ~100x resolution enhancement for LIDARs using AI, with LIDAR-Camera low level Fusion and 3D Reconstruction, creating a cost-effective superior resolution LIDAR

Algorithmic benefits:

• Enhance accuracy and robustness of downstream tasks (e.g. Object Detection, Semantic Segmentation etc.) by using the advantages of both sensors to correct the drawbacks of both

Product benefits:

Superior performance for driving functions
e.g. Drivable Terrain, Free Space, Obstacle Detection,
Emergency Braking, Road Curb Height, Environmental Mapping

15 April 2021 Robert-Zsolt Kabai, © Continental AG

Safe and Dynamic Driving towards Vision Zero

Continental 3

Questions?

SensePlanAct