Best Algo for Tabular/Business Data? Sorry, It's Not Deep Learning...

Szilard Pafka, PhD
Chief Scientist, Epoch (USA)

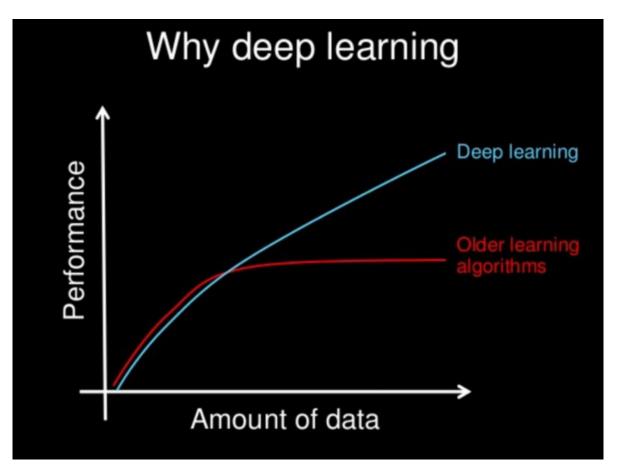
Budapest ML Forum (Online)
May 2022

Edit profile

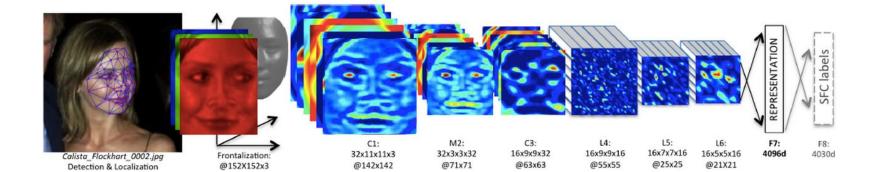
Szilard [Deeper than Deep Learning]

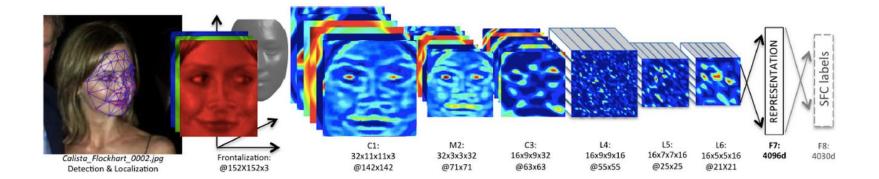
@SzilardPafka

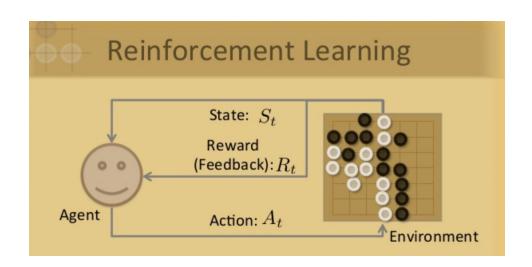
physics PhD, chief (data) scientist, meetup organizer, (visiting) professor, machine learning benchmarks

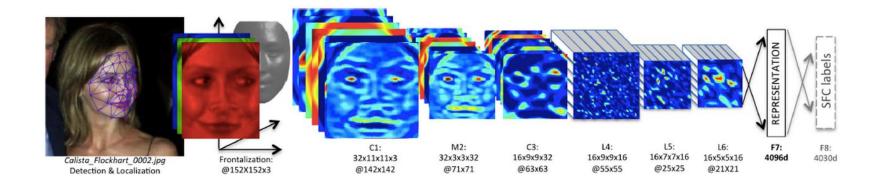

The Woodlands, Texas
 Szilard.github.io/aboutme/
 Joined February 2014

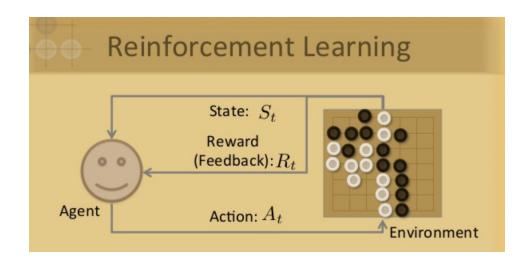
226 Following **4,736** Followers

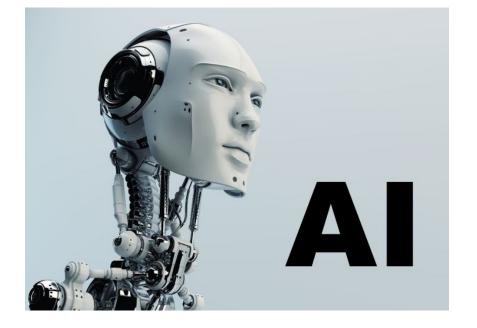

Disclaimer:
I am not representing my employer (Epoch) in this talk

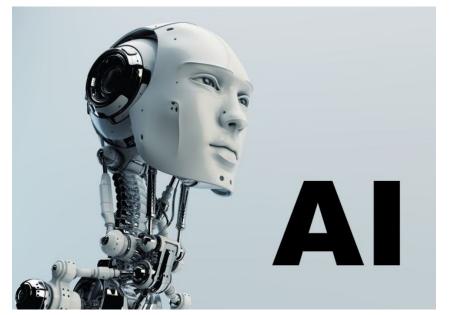

results etc. mentioned in this talk

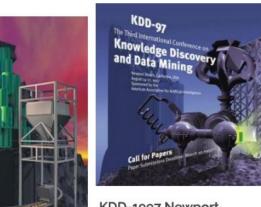

I cannot confirm nor deny if Epoch is using any of the methods, tools,



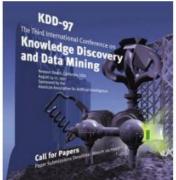

Source: Andrew Ng







KDD-2001 San Francisco. CA August 26-29


More information

KDD-2002 Edmonton, AB July 23-26

More information

KDD-1997 Newport Beach, CA August 14-17

More information

KDD-1998 New York, NY August 27-31

More information

KDD-1993 workshop Washington, D.C., July 11-12


More information

KDD-1989 workshop Detroit, MI, August 20

KDD-2000 Boston, MA August 20-23

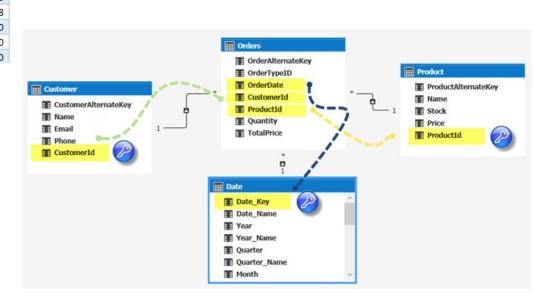
More information

KDD-1995 Montreal, QC August 20-21

More information

August 2-4 More information

KDD-1996 Portland, OR



M	Α	В	С	D	E	F
1	Country -	Salesperson 💌	Order Date 💌	OrderID 💌	Units 💌	Order Amount
2	USA	Fuller	1/01/2011	10392	13	1,440.00
3	UK	Gloucester	2/01/2011	10397	17	716.72
4	UK	Bromley	2/01/2011	10771	18	344.00
5	USA	Finchley	3/01/2011	10393	16	2,556.95
6	USA	Finchley	3/01/2011	10394	10	442.00
7	UK	Gillingham	3/01/2011	10395	9	2,122.92
8	USA	Finchley	6/01/2011	10396	7	1,903.80
9	USA	Callahan	8/01/2011	10399	17	1,765.60
10	USA	Fuller	8/01/2011	10404	7	1,591.25
11	USA	Fuller	9/01/2011	10398	11	2,505.60
12	USA	Coghill	9/01/2011	10403	18	855.01
13	USA	Finchley	10/01/2011	10401	7	3,868.60
14	USA	Callahan	10/01/2011	10402	11	2,713.50
15	UK	Rayleigh	13/01/2011	10406	15	1,830.78
16	USA	Callahan	14/01/2011	10408	10	1,622.40
17	USA	Farnham	14/01/2011	10409	19	319.20
18	USA	Farnham	15/01/2011	10410	16	802.00

À	Α	В	С	D	E	F
1	Country -	Salesperson 💌	Order Date	OrderID 💌	Units 💌	Order Amoun
2	USA	Fuller	1/01/2011	10392	13	1,440.00
3	UK	Gloucester	2/01/2011	10397	17	716.72
4	UK	Bromley	2/01/2011	10771	18	344.00
5	USA	Finchley	3/01/2011	10393	16	2,556.95
6	USA	Finchley	3/01/2011	10394	10	442.00
7	UK	Gillingham	3/01/2011	10395	9	2,122.92
8	USA	Finchley	6/01/2011	10396	7	1,903.80
9	USA	Callahan	8/01/2011	10399	17	1,765.60
10	USA	Fuller	8/01/2011	10404	7	1,591.25
11	USA	Fuller	9/01/2011	10398	11	2,505.60
12	USA	Coghill	9/01/2011	10403	18	855.01
13	USA	Finchley	10/01/2011	10401	7	3,868.60
14	USA	Callahan	10/01/2011	10402	11	2,713.50
15	UK	Rayleigh	13/01/2011	10406	15	1,830.78
16	USA	Callahan	14/01/2011	10408	10	1,622.40
17	USA	Farnham	14/01/2011	10409	19	319.20
18	USA	Farnham	15/01/2011	10410	16	802.00

Params		AUC	Time (s)	Epochs	
default: activation = "Rectifier", hidden = c(2	200,200)	73.1	270	1.8	
hidden = c(50,50,50,50), input_dropout_ratio	= 0.2	73.2	140	2.7	
hidden = $c(50,50,50,50)$		73 2	110	19	
hidden = c(20,20) hidden = c(20) szilard commented			27, 2015		
RectifierWithDropout, c(200,200,200 ADADELTA rho = 0.95, epsilon = 1e-6		ificiall	y and are		sets sampled disjunctly from 2 ally not encoded as ordinal va
				intention	ally not encoded as ordinal va
rho = 0.999, epsilon = 1e-08	1	7	3.3 27	0	1.9
adaptive = FALSE default: rate = 0.005, deca	ay = 1, momentum = 0	7	3.0 34	10	1.1
rate = 0.001, momentum = 0.5 / 1e5 / 0.99		7	3.2 41	0 (0.7
rate = 0.01, momentum = 0.5 / 1e5 / 0.99			3.3 28	0 (0.9
rate = 0.01, rate_annealing = 1e-05, momentum = 0.5 / 1e5 / 0.99			3.5 36	60 1	1
rate = 0.01, rate_annealing = 1e-04, momen	tum = 0.5 / 1e5 / 0.99	7	2.7 37	00	8.7

DL with h2o #28

szilard commented on Nov 27, 2015

Trying to see if DL can match RF/GBM in accuracy on the airline dataset (where train is sampled from years 2005-2006, while validation and test sets sampled disjunctly from 2007). Also, some variables are kept categorical artificially and are intentionally not encoded as ordinal variables (to better match the structure of business datasets).

arnocandel commented on Nov 29, 2015

Yes, after a bit of tinkering, I also cannot get higher than 0.735 test set AUC. On my i7 5820k home PC:

system.time({

md <- h2o.deeplearning(x = Xnames, y = "dep_delayed_15min", training_frame = dx_train,

some feature engineering (e.g., cutting the original DepTime into 48 categorical half-hour slots). Out of 675 input neurons, only 2 are always populated with non-zero values (the two numeric features), and 673 values are mostly 0, only 6 categoricals are set to 1. That's where the inefficiency comes from. GBM/DRF are much more efficient at simply cutting up the feature space, which is was seems to be needed here. Best, Arno

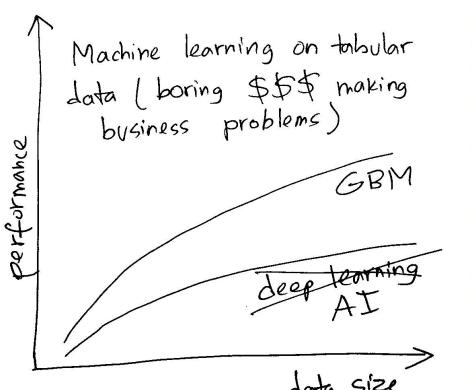
DL with mxnet #29

(b) Closed szilard opened this issue on Nov 27, 2015 ⋅ 3 comments

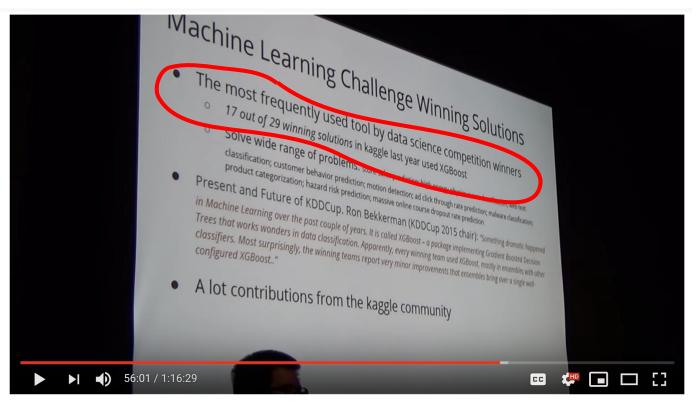
szilard commented on Nov 27, 2015

Trying to see if DL can match RF/GBM in accuracy on the airline dataset (where train is sampled from years 2005-2006, while validation and test sets sampled disjunctly from 2007). Also, some variables are kept categorical artificially and are intentionally not encoded as ordinal variables (to better match the structure of business datasets).

tgchen commented on Nov 30, 2015



Deep nets are definitely harder to tune, if things converge too fast, try smaller learning rate, shuffle the data. Seems much of gains in the airline dataset comes from combination of categories, which deepnet may not be very good at



Szilard [Deeper than Deep Learning] @DataScienceLA · 2 Nov 2016

Can anyone beat GBMs with deep learning (ahem, AI) on the airline dataset (or generally tabular/business data)? github.com/szilard/benchm...

kaggle

XGBoost A Scalable Tree Boosting System June 02, 2016

26,599 views

→ SHARE

≡₊ SAVE


```
3. Parameter
tuning and
ensembling
                            # train xgboost
                          xgb <- xgboost(data = data.matrix(tr
                                         label = train$destina
                                         eta = 0.001,
                                         max_depth = 15,
                                         nround=25,
                                         subsample = 0.5,
                                          colsample_bytree = 0.
                                         seed = 1,
                                         eval_metric = "merror
                                         objective = "multi:so
                                         num_class = 12,
                                         nthread = 4
▶ ▶ 1 1 2:58 / 4:06
```

What Kaggle has learned from almost a million data scientists - Anthony Goldbloom

18,153 views


```
3. Parameter
tuning and
ensembling
```

```
# train xgboost
xgb <- xgboost(data = data.matrix(tr
              label = train$destina
               eta = 0.001,
              max_depth = 15,
              nround=25,
               subsample = 0.5,
               colsample_bytree = 0.
               seed = 1,
               eval_metric = "merror
              objective = "multi:so
              num_class = 12,
              nthread = 4
```

What Kaggle has learned from almost a million data scientists - Anthony Goldbloom

18.153 views

Published on May 25, 2017

2:58 / 4:06

Gilberto Titericz • 1st

Data Scientist at NVIDIA Rapids

In my experience GBMs are, by far, the best for tabular structured data.

4mo ***

Reply

```
3. Parameter
tuning and
ensembling
                            # train xaboost
                           xgb <- xgboost(data = data.matrix(tr
                                         label = train$destina
                                          eta = 0.001,
                                         max_depth = 15,
                                          nround=25,
                                          subsample = 0.5,
                                          colsample_bytree = 0.
                                         seed = 1,
                                          eval_metric = "merror
                                          objective = "multi:so
                                         num_class = 12,
                                          nthread = 4
   2:58 / 4:06
```

What Kaggle has learned from almost a million data scientists - Anthony Goldbloom 18.153 views

Gilberto Titericz • 1st Data Scientist at NVIDIA Rapids 4mo ***

In my experience GBMs are, by far, the best for tabular structured data.

Bojan Tunguz @tunguz · Apr 5

There are two kinds of people in the World.

- 1. Those who are using XGBoost for tabular data
- 2. Those who will use XGBoost for tabular data

17 9

7 152

Best algo for tabular data? (most often)

Gradient Boosted Trees

Neural Nets / Deep Learn.

Other

50 votes · Final results

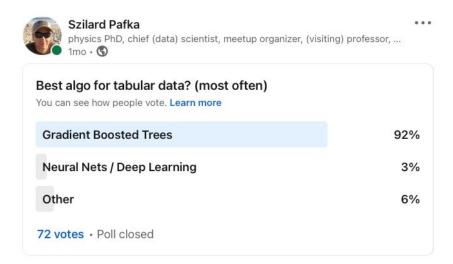
2:42 PM · Feb 22, 2022 · Twitter Web App

76%

...

2%

22%

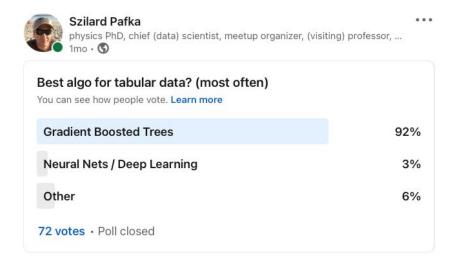

Best algo for tabular data? (most often)

Gradient Boosted Trees	76%
Neural Nets / Deep Learn.	2%
Other	22%

...

50 votes · Final results

2:42 PM · Feb 22, 2022 · Twitter Web App



Best algo for tabular data? (most often)

Gradient Boosted Trees	76%
Neural Nets / Deep Learn.	2%
Other	22%

50 votes · Final results

2:42 PM · Feb 22, 2022 · Twitter Web App

...

Bojan Tunguz, Ph.D. Author

1mo ***

Machine Learning at NVIDIA | Physicist | Quadruple Kaggle Gran...

Szilard Pafka Unfortunately it's still far from being mainstream. But some of us are working hard on getting it there. MLP [188] TabTransformer [99] DeepFM [14] NODE [6]

DeepGBM [52] DNFNet [43]

RLN [54] STG [189]

TabNet [5] NAM [190] VIME [67]

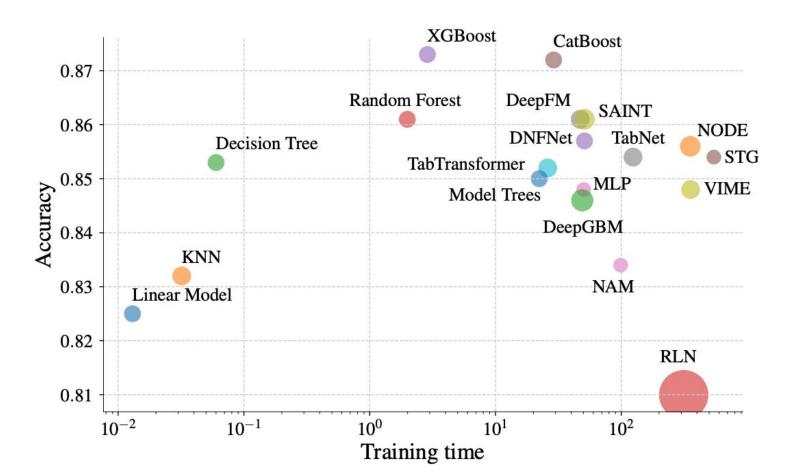
SAINT [9]

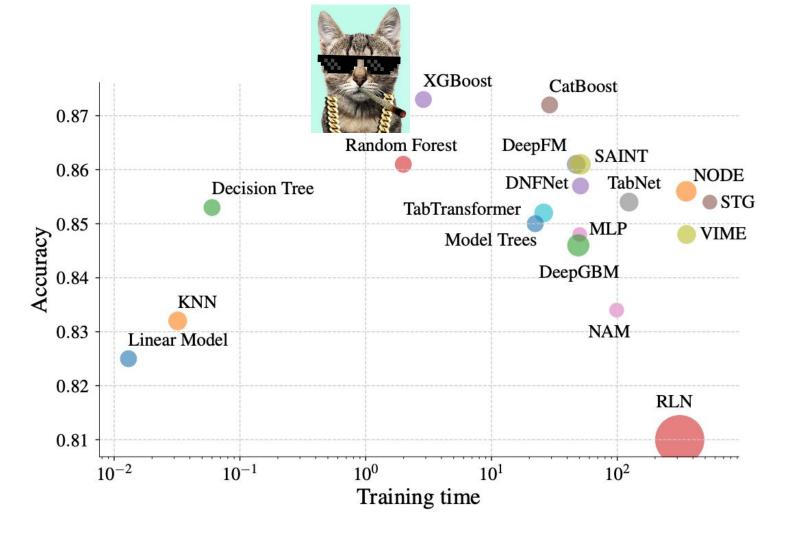
MLP [188] TabTransformer [99]

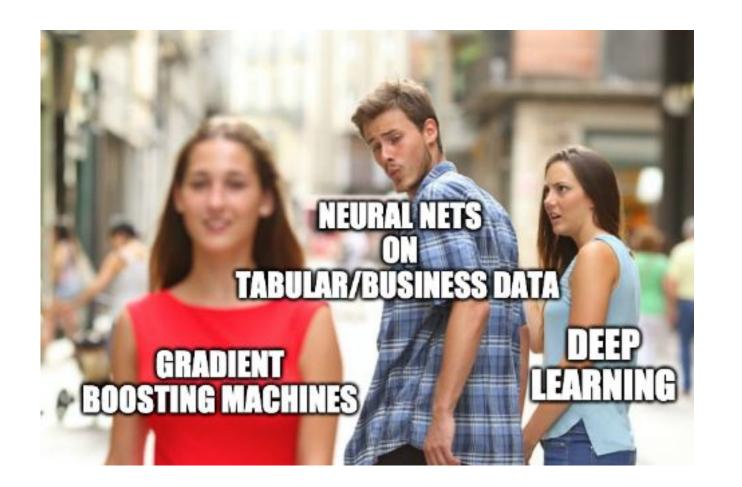
DeepFM [14] NODE [6]

DeepGBM [52] DNFNet [43]

RLN [54] STG [189]


TabNet [5] NAM [190]


VIME [67] SAINT [9]


SUBMITTED TO THE IEEE, FEBRUARY 2022

Deep Neural Networks and Tabular Data: A Survey

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk and Gjergji Kasneci

MODEL	1st	2ND			**
			AVG	1st	2N
BST-DT	0.580	0.228	RF	0.727	0.20°
RF	0.390	0.525	ANN	0.053	0.172
BAG-DT	0.030	0.232	CONTRACT CONTRACTOR CO		
SVM	0.000	0.008	BSTDT	0.059	0.228
ANN	0.000	0.007	SVM	0.043	0.19
KNN	0.000	0.000	LR	0.089	0.132
BST-STMP	0.000	0.000	BAGDT	0.002	0.013
DT	0.000	0.000			0.0_
LOGREG	0.000	0.000	KNN	0.023	0.048
NB	0.000	0.000	BSTST	0.004	0.009
			PRC	0	(
			NB	0	(

An Empirical Comparison of Supervised Learning Algorithms

http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf

An Empirical Evaluation of Supervised Learning in High Dimensions

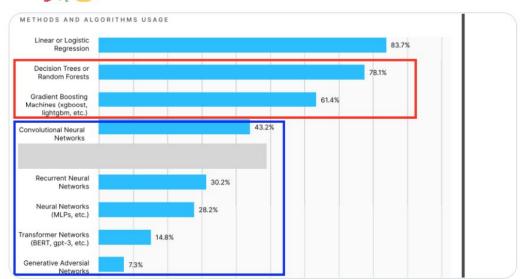
http://lowrank.net/nikos/pubs/empirical.pdf

MODEL	1ST	2ND
BST-DT RF BAG-DT SVM ANN KNN BST-STMP	0.580 0.390 0.030 0.000 0.000 0.000 0.000	0.228 0.525 0.232 0.008 0.007 0.000 0.000
DT LOGREG	0.000 0.000	0.000 0.000
NB	0.000	0.000

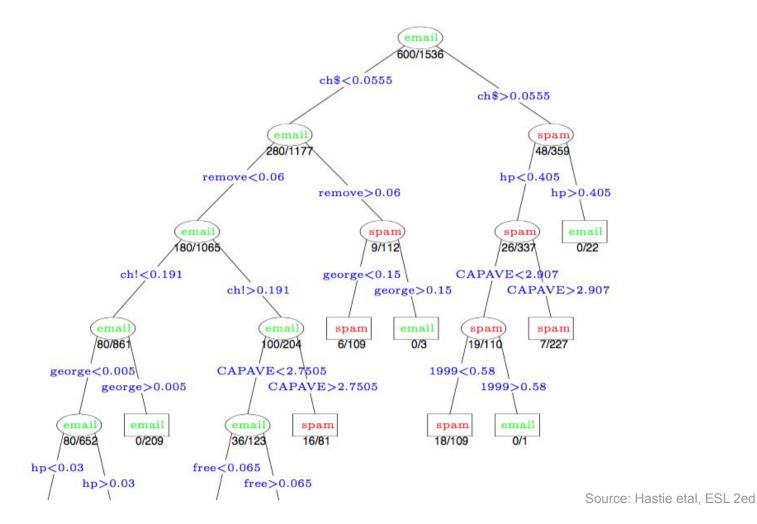
AVG	1st	2 _{ND}
RF	0.727	0.207
ANN	0.053	0.172
BSTDT	0.059	0.228
SVM	0.043	0.195
LR	0.089	0.132
BAGDT	0.002	0.012
KNN	0.023	0.045
BSTST	0.004	0.009
PRC	0	0
NB	0	0

An Empirical Comparison of Supervised Learning Algorithms

http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf


An Empirical Evaluation of Supervised Learning in High Dimensions

http://lowrank.net/nikos/pubs/empirical.pdf


Let's just note that at the end of 2020 gradient boosting (GBMs) and random forests still beat neural networks (deep learning and all that shit) hands down (results from the 2020 Kaggle survey kaggle.com/kaggle-survey-...). GBM/RF ~85% vs NN (any) ~50%. I won a 5-year long bet

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \dots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

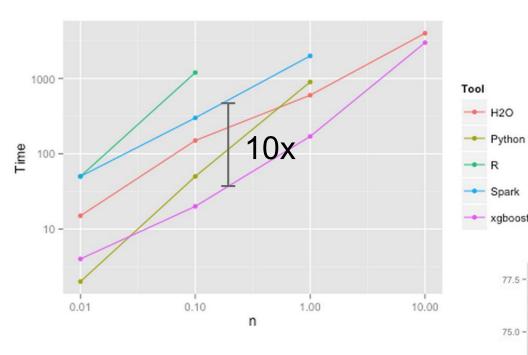
- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

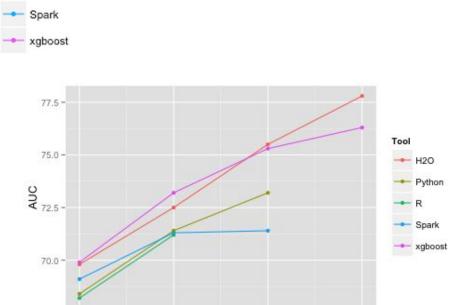
Trevor Hastie
Robert Tibshirani
Jerome Friedman

The Elements of
Statistical Learning
Data Mining, Inference, and Prediction

Second Edition

- R packages
- Python scikit-learn
- Vowpal Wabbit
- H2O
- xgboost
- Spark MLlib
- a few others


- R packages
- Python scikit-learn
- Vowpal Wabbit
- H2O
- xgboost
- Spark MLlib
- a few others

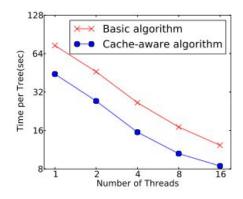


Simple/limited/incomplete benchmark

(2015-)

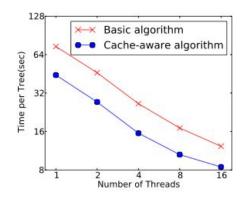
n

1.00


10.00

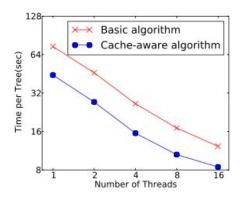
0.10

0.01

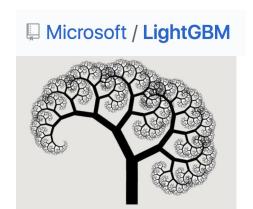

Computer Science > Learning

XGBoost: A Scalable Tree Boosting System

XGBoost: A Scalable Tree Boosting System

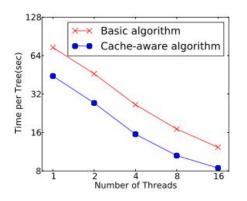


2015


arXiv.org > cs > arXiv:1603.02754

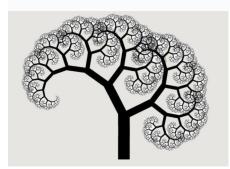
Computer Science > Learning

XGBoost: A Scalable Tree Boosting System

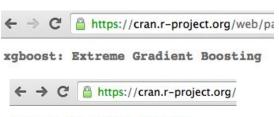


2017

arXiv.org > cs > arXiv:1603.02754


Computer Science > Learning

XGBoost: A Scalable Tree Boosting System



h2o: R Interface for H2O

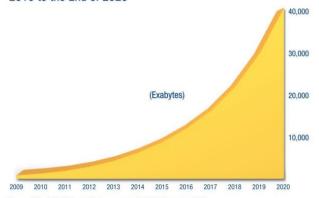
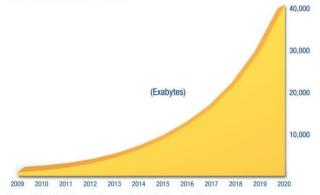

Why not using Spark for training gradient boosting machines/boosted trees (GBM/GBDT)? Because it's >100x slower and uses >100x more RAM compared to top libraries such as xgboost or lightgbm. 100 fining times worse See details in my talk here youtube.com/watch?v=qjuizR...

Figure 1

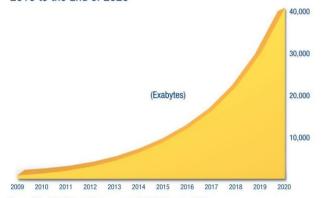

The Digital Universe: 50-fold Growth from the Beginning of 2010 to the End of 2020

Source: IDC's Digital Universe Study, sponsored by EMC, December 2012

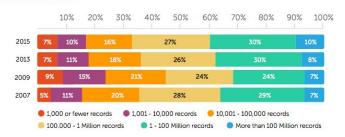
Figure 1

The Digital Universe: 50-fold Growth from the Beginning of 2010 to the End of 2020

Source: IDC's Digital Universe Study, sponsored by EMC, December 2012



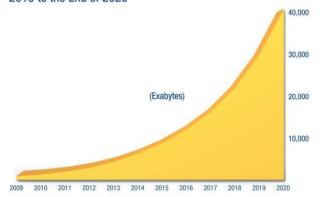
"It takes a big man to admit his data is small" — @jcheng



The Digital Universe: 50-fold Growth from the Beginning of 2010 to the End of 2020

Source: IDC's Digital Universe Study, sponsored by EMC, December 2012

TYPICAL SIZE OF DATASETS

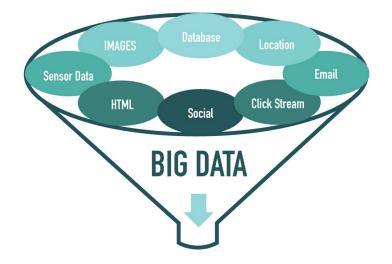


"It takes a big man to admit his data is small" — @jcheng

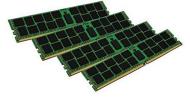
Figure 1

The Digital Universe: 50-fold Growth from the Beginning of 2010 to the End of 2020

Source: IDC's Digital Universe Study, sponsored by EMC, December 2012


TYPICAL SIZE OF DATASETS

"It takes a big man to admit his data is small" — @jcheng



Kingston Technology Value RAM 128GB Kit (4x32GB) 2133MHz DDR4 ECC Reg CL15 (KVR21R15D4K4/128)

by Kingston Technology Be the first to review this item

Was: \$743.99

Price: \$743.96 & FREE Shipping. Details

Kingston Technology Value RAM 128GB Kit (4x32GB) 2133MHz DDR4 ECC Reg CL15 (KVR21R15D4K4/128)

by Kingston Technology Be the first to review this item

Was: \$743.99

Price: \$743.96 & FREE Shipping. Details

Model	vCP	U I	Mem	(GiB)
r3.8xlarge	32		244	(2015)
x1e.32xlarge	128	3,904		
u-12tb1.metal	448		12	(TiB)

Kingston Technology Value RAM 128GB Kit (4x32GB) 2133MHz DDR4 ECC Reg CL15 (KVR21R15D4K4/128)

by Kingston Technology Be the first to review this item

Was: \$743.99

Price: \$743.96 & FREE Shipping. Details

Model	vCF	PU	Mem	(GiB)
r3.8xlarge	32		244	(2015
x1e.32xlarge	128	3,904	(3)	
u-12tb1.metal	448		12	(TiB)

-32GB

Szilard [Deeper than Deep Learning] @DataScienceLA

How much RAM do you have on the server/desktop/laptop you are most commonly using to train machine learning models?

10205
32-127 GB
128GB-1TB
>1TB

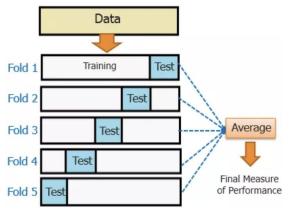
50.7%

142 votes · Final results

I wish my #machinelearning worked... ("both" is not a choice (b) #bigdata #datascience #rstats #pydata cc (a) @h2o @databricks @cloudera @kaggle

on 10x bigger data 9.6%

10x faster 70.2%


I don't care about either 20.2%

104 votes · Final results

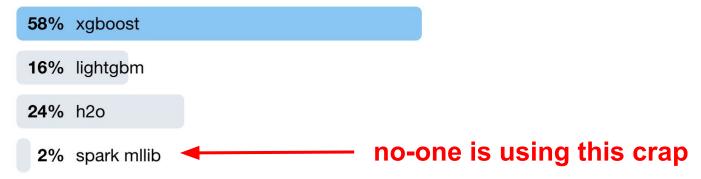
8:48 AM · Aug 3, 2017 · Twitter Web Client

szilard / GBM-perf

(2017-)

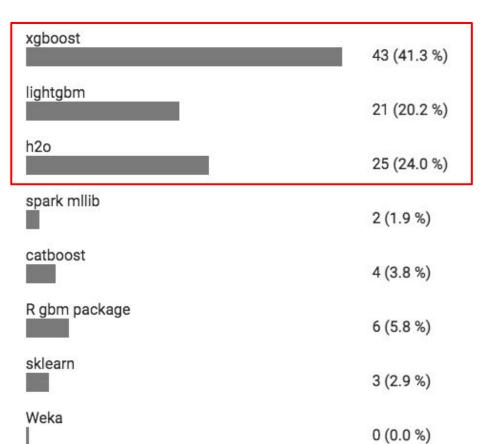
```
git clone https://github.com/szilard/GBM-perf.git
cd GBM-perf/cpu
sudo docker build -t gbmperf_cpu .
sudo docker run --rm gbmperf_cpu
```


Friday fun: what's your favorite gradient boosting machine (GBM) library?


```
58% xgboost16% lightgbm24% h2o2% spark mllib
```

127 votes • Final results


3:21 PM - 11 May 2018



Friday fun: what's your favorite gradient boosting machine (GBM) library?

127 votes • Final results

0 (0.0 %)

other

104 people have already voted You have already answered this poll

show the configuration of this Ferendum

What gradient boosting machine (GBM) library have you been using the most in 2020? (4 options, for others please reply to tweet)

xgboost	53.5%
lightgbm	26.7%
h2o	10.9%
catboost	8.9%
570 votes · Final results	
10:59 AM Sep 9, 2020 · Twitter Web App	

r4.8xlarge (32 cores, but run on physical cores only/no hyperthreading) with software as of 2021-01-14:

Tool	Time[s] 100K	Time[s] 1M	Time[s] 10M	AUC 1M	AUC 10M
h2o	12	15	90	0.762	0.776
xgboost	0.6	3.5	40	0.748	0.754
lightgbm	2.6	4.2	20	0.765	0.792
catboost	3.8	10	80	0.734	0.735

r4.8xlarge (32 cores, but run on physical cores only/no hyperthreading) with software as of 2021-01-14:

Tool	Time[s] 100K	Time[s] 1M	Time[s] 10M	AUC 1M	AUC 10M
h2o	12	15	90	0.762	0.776
xgboost	0.6	3.5	40	0.748	0.754
lightgbm	2.6	4.2	20	0.765	0.792
catboost	3.8	10	80	0.734	0.735

p3.2xlarge (1 GPU, Tesla V100) with software as of 2021-01-15 (and CUDA 11.0):

Tool	Time[s] 100K	Time[s] 1M	Time[s] 10M	AUC 1M	AUC 10M
h2o xgboost	6.4	14	45	0.749	0.756
xgboost	3.6	6.5	11	0.748	0.756
lightgbm	7	10	42	0.767	0.792
catboost	1.8	4.6	37	0.732 ?!	0.736 ?!

100M records and RAM usage

CPU (m5.12xlarge):

Tool	time [s]	AUC	RAM train [GB]
h2o	520	0.775	8
xgboost	510	0.751	15
lightgbm	310	0.774	5
catboost	3360	0.723 ?!	140

UPDATE 2020-09-08:

Tool	time [s]	AUC	RAM train [GB]
catboost	930	0.736	50

100M records and RAM usage

GPU (Tesla V100):

Tool	time [s]	AUC	GPU mem [GB]	extra RAM [GB]
h2o xgboost	270	0.755	4	30
xgboost	80	0.756	6	0
lightgbm	400	0.774	3	6
catboost	crash (OOM)		>16	14

UPDATE 2020-09-08:

catboost still crashes out-of-memory

CPU (m5.12xlarge):

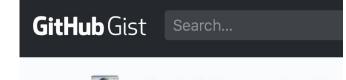
Tool	time [s]	AUC	RAM train [GB]
h2o	520	0.775	8
xgboost	510	0.751	15
lightgbm	310	0.774	5
catboost	3360	0.723 ?!	140

UPDATE 2020-09-08:

Tool	time [s]	AUC	RAM train [GB]
catboost	930	0.736	50

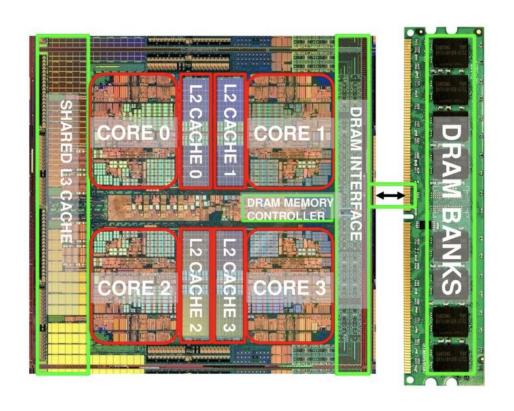
```
## exporting model for scoring
h2o.download_mojo(md_rf, path = "./h2o")

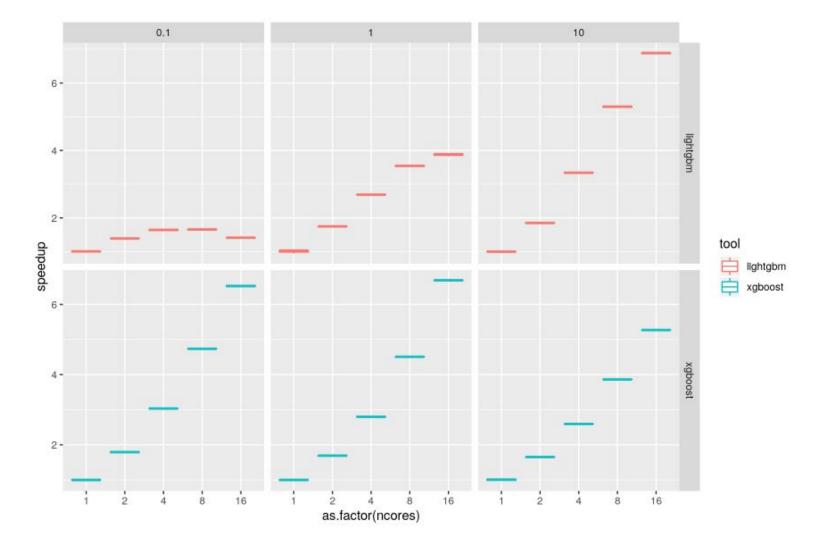
## building prediction service


# (need_ietty-runner.jar_ROOT.war_from_Steam)
```


GitHub Gist Search...


```
## exporting model for scoring
h2o.download_mojo(md_rf, path = "./h2o")
         ## building prediction service
         # (need jetty-runner.jar ROOT.war from Steam)
         java -jar jetty-runner.jar ROOT.war
         curl -X POST --form mojo=@h2o_RF.zip --form jar=@h2o-genmodel.jar \
                        localhost:8080/makewar > h2o_RF_M0J0.war
                             ## run prediction service
                             java -jar jetty-runner.jar --port 20000 h2o_RF_MOJO.war
```

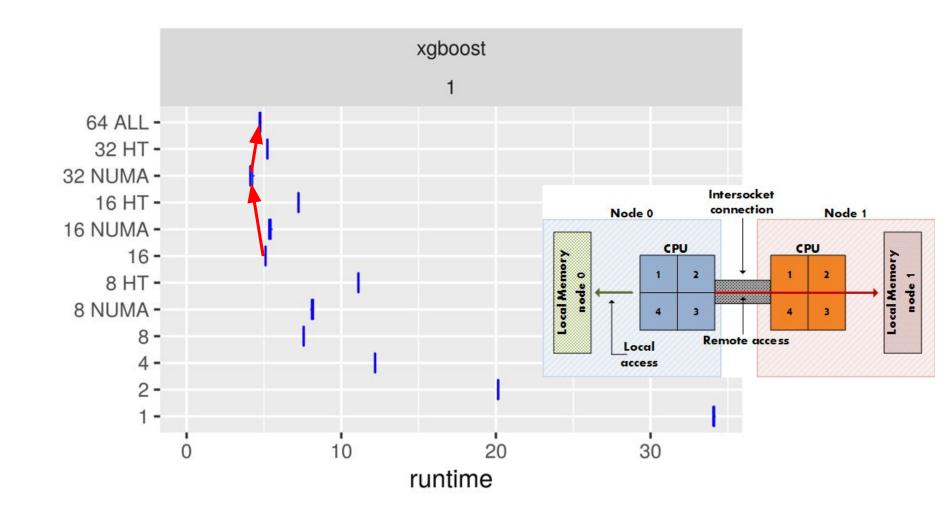




score via REST API

H₂**O**.ai

time curl "http://localhost:20000/predict?Month=c-8&DayofMonth=c-21&Day
(fast scoring needs JVM to warm up with a few requests)

szilard / GBM-perf

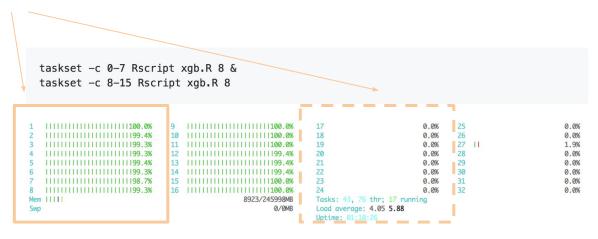


Speedup from 1 core to 16:

data size	h2o	xgboost	lightgbm	catboost
0.1M	3x	6.5x	1.5x	3.5x
1M	8x	6.5x	4x	6x
10M	24x	5x	7.5x	8x

Speedup from 1 core to 16:

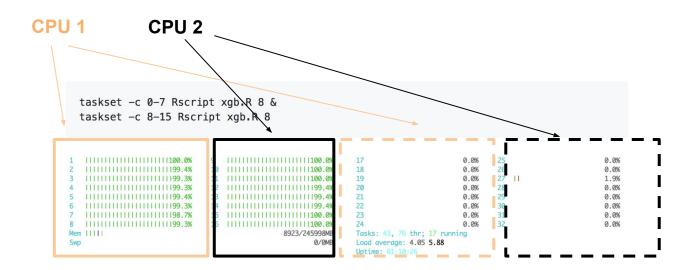
data size	h2o	xgboost	lightgbm	catboost
0.1M	Зх	6.5x	1.5x	3.5x
1M	8x	6.5x	4x	6x
10M	24x	5x	7.5x	8x



szilard commented on Nov 6, 2016 • edited -

r3.8xlarge: CPU1 0-7 (and 16-23 hyperthread pairs), CPU2 8-15

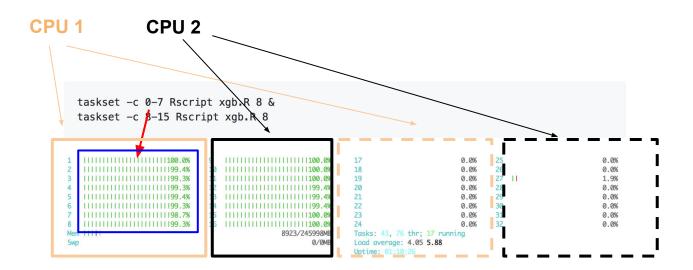
CPU₁



(1) Open szilard opened this issue on Nov 6, 2016 · 4 comments

szilard commented on Nov 6, 2016 • edited -

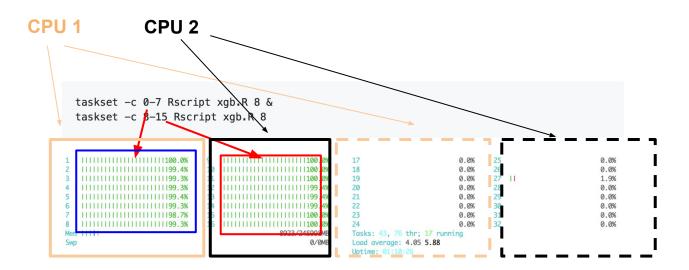
r3.8xlarge: CPU1 0-7 (and 16-23 hyperthread pairs), CPU2 8-15



① Open szilard opened this issue on Nov 6, 2016 · 4 comments

szilard commented on Nov 6, 2016 • edited •

r3.8xlarge: CPU1 0-7 (and 16-23 hyperthread pairs), CPU2 8-15



szilard commented on Nov 6, 2016 • edited •

r3.8xlarge: CPU1 0-7 (and 16-23 hyperthread pairs), CPU2 8-15

If you are training machine learning models on CPU, how many CPU cores are you most commonly using?

1-4	36.5%
5-16	40%
17-64	13%
>64	10.4%

115 votes · Final results

12:08 PM · Sep 21, 2020 · Twitter Web App

r4.8xlarge (32 cores, but run on physical cores only/no hyperthreading) with software as of 2021-01-14:

Tool	Time[s] 100K	Time[s] 1M	Time[s] 10M	AUC 1M	AUC 10M
h2o	12	15	90	0.762	0.776
xgboost	0.6	3.5	40	0.748	0.754
lightgbm	2.6	4.2	20	0.765	0.792
catboost	3.8	10	80	0.734	0.735

p3.2xlarge (1 GPU, Tesla V100) with software as of 2021-01-15 (and CUDA 11.0):

Tool	Time[s] 100K	Time[s] 1M	Time[s] 10M	AUC 1M	AUC 10M
h2o xgboost	6.4	14	45	0.749	0.756
xgboost	3.6	6.5	11	0.748	0.756
lightgbm	7	10	42	0.767	0.792
catboost	1.8	4.6	37	0.732 ?!	0.736 ?!

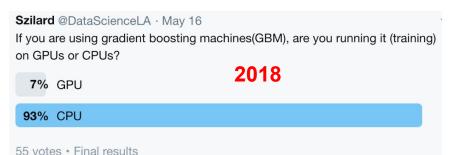
100M records and GPU memory usage

GPU (Tesla V100):

Tool	time [s]	AUC	GPU mem [GB]	extra RAM [GB]
h2o xgboost	270	0.755	4	30
xgboost	80	0.756	6	0
lightgbm	400	0.774	3	6
catboost	crash (OOM)		>16	14

UPDATE 2020-09-08:

catboost still crashes out-of-memory

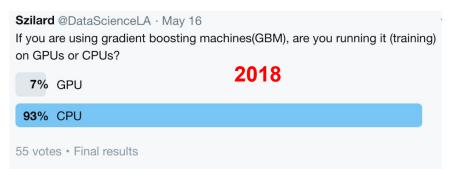

Szilard @DataScienceLA · May 16

If you are using gradient boosting machines(GBM), are you running it (training) on GPUs or CPUs?

7% GPU

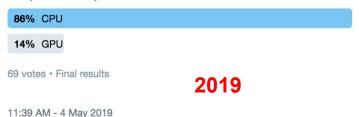
2018

55 votes * Final results

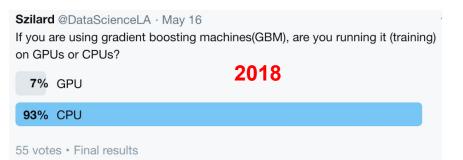

If you are using gradient boosting machines (GBM)/boosted trees (GBDT) are you using (training) them most often on the CPU or a GPU? #xgboost #lightgbm #h2oai #catboost #apachespark #mllib #sklearn

86% CPU

14% GPU


69 votes • Final results

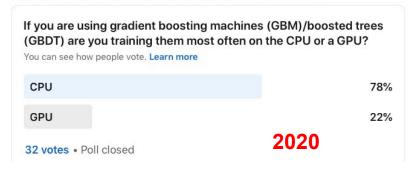
2019

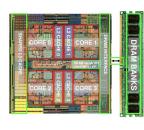

If you are using gradient boosting machines (GBM)/boosted trees (GBDT) are you using (training) them most often on the CPU or a GPU? #xgboost #lightgbm #h2oai #catboost #apachespark #mllib #sklearn

If you are using gradient boosting machines (GBM)/boosted trees (GBDT) are you training them most often on the CPU or a GPU? #xgboost #lightgbm #h2oai #catboost #apachespark #mllib #sklearn

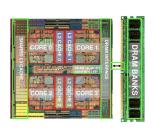
СРИ	61.5%
GPU	38.5%
104 votes · Final results	2020

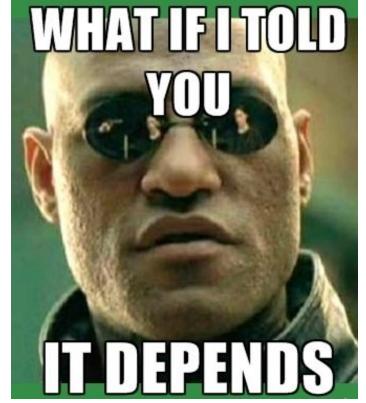
If you are using gradient boosting machines (GBM)/boosted trees (GBDT) are you using (training) them most often on the CPU or a GPU? #xgboost #lightgbm #h2oai #catboost #apachespark #mllib #sklearn

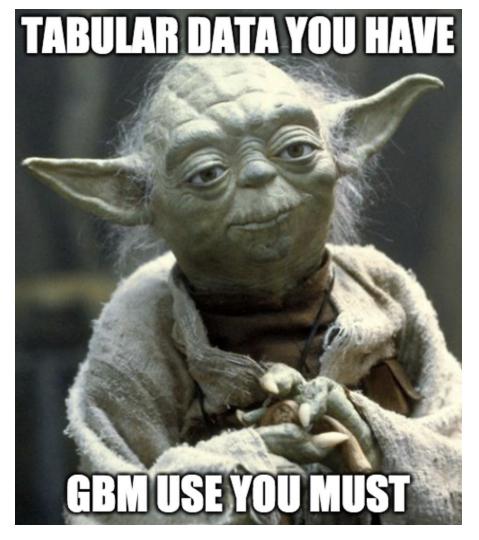

If you are using gradient boosting machines (GBM)/boosted trees (GBDT) are you training them most often on the CPU or a GPU? #xgboost #lightgbm #h2oai #catboost #apachespark #mllib #sklearn


. . .

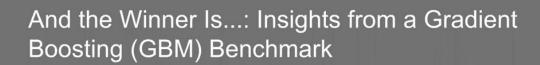
POLL: If you are using gradient boosting machines (GBM)/boosted trees (GBDT) are you training them most often on the CPU or a GPU? #xgboost #lightgbm #h2oai #catboost #apachespark #mllib #sklearn







	xgboost	lightgbm	h2o	catboost
easy R install	CRAN	CRAN	java+CRAN	devtools+pre-binary
maintained	yes	yes	yes	yes
preprocessing	1-hot	1-hot/categ int	not needed	categ internal
new cats scoring	no	no	yes	no
early stopping	yes	yes	yes	yes
speed (CPU)	fastest	fastest	slow (small data)	slow
GPU supported	yes	yes	via xgboost	yes, but mem usage
speed GPU	fastest	slow	indirectly/slow	slow on larger data
REST scoring	no	no	yes	no
other algos	RF	RF	RF/GLM/NN	none
best for	Kaggle	Kaggle	prod/real-time	Kaggle


in linkedin.com/in/szilard

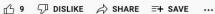
github.com/szilard

Search

Szilard Pafka, PhD Chief Scientist, Epoch

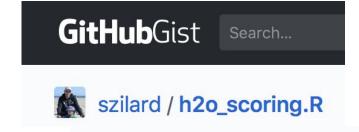
LA Data Science Meetup (Online) Nov 2020

LA Data Science Meetup, Nov. 10, 2020 - Talk #1 - Szilard Pafka: GBM Benchmarks



cleaned by Adblock for Youtube™ Share

271 views • Nov 11, 2020



0:51 / 27:39

More:

- szilard / benchm-ml
- ★ Star 1,203
- szilard / teach-data-science-UCLA-master-appl-stats
 - szilard / teach-ML-CEU-master-bizanalytics
- szilard / GBM-intro
 - szilard / GBM-workshop
 - szilard / GBM-perf
 - szilard / GBM-tune
 - szilard / GBM-multicore

szilard / ML-scoring

Bojan Tunguz @tunguz · Mar 28 When you find out your intern used NNs on **tabular** data.

27

552

