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eccentricity, the receptive fields of V1 neurons studied ranged
from 0.3° to 1°, whereas those of V2 neurons ranged from 0.7°
to 2°. As we sought to understand how the same stimuli were
processed by the different cortical areas, we did not vary the size
of the test stimuli.

Fig. 3 presents the findings from a V1S neuron. Fig. 3 a and
c show that this cell responded significantly more to the illusory
contour than to the amodal condition (Fig. 1b) or to all of the
rotated corner disk configurations (Fig. 1 i–l). The illusory
contour elicited a response when it was placed at precisely the
same location at which a real contour elicited the maximum
response (Fig. 3a). However, the response to the illusory contour
appeared at 100 msec after the appearance of the Kanizsa
square, as compared with 45 msec for a real square (Fig. 3d).

We characterized a cell’s illusory contour responsiveness, or
its illusory contour response, by the following two modulation
indices: IC1 ! (Ri " Ra)!(Ri # Ra) and IC2 ! (Ri " Rr)!(Ri # Rr),
where Ri is the response to the illusory contour, Ra is the
response to the amodal condition, and Rr is the response to the

Fig. 1. Stimulus set used in the experiment. (a) Kanizsa figure made up of
four corner discs (pac-men). (b) Amodal figure (a gray square in a black
background partially occluded by a foreground surface with four apertures).
(c) Four circular discs. (d) Line square. (e) White square. ( f) Gray square. (g) Line
Square with four corner discs. (h) White square with four corner discs. (i–l)
Various configurations of the rotated corners. According to Kanizsa’s defini-
tion, amodal presence refers to the completion of part of an object that is not
directly visible because it is covered by another object. In b, we can see a gray
square against a black background behind a gray wall with four apertures. The
amodal contour of the gray square is not as immediately ‘‘visible’’ as the
subjective contour of the Kanizsa figure (a). For a cell selective for horizontal
edges, only the bottom horizontal contour and its neighboring positions
would be placed on the cell’s receptive field in a manner shown in Fig. 2a. For
cells with different orientation preference, each of the stimuli was rotated
accordingly so that the orientation preference of the cell was aligned with the
illusory contour. The five sequences used were: (c, a, c, a), (c, b, c, e), (c, g, c, h),
(m, d, m, f ), and (i, j, k, l), where the symbols stand for the defined above, and
m stands for the gray screen condition. (i, j, k, l) was designed to create the
perception that the four corner discs were rotating independently on screen
in a single trial. Later on, we also tested a sixth sequence, (c, j, c, l).

Fig. 2. a illustrates the spatial relationship between the fixation spot (black
dot), the cell’s receptive field (circle), and the stimulus figure. The cell’s
receptive field was placed in the middle of the illusory contour at the bottom
of the Kanizsa figure, for a cell selective for horizontal orientation. For cells of
other orientations, the stimuli were rotated accordingly so that the contour
was parallel with the preferred orientation of the cell. The stimulus was
presented in ten locations 0.25° apart in successive trials relative to the
receptive field so that the illusory contour was collinear with the ten line
segments as shown in the figure. b illustrates the presentation of the Kanizsa
square sequence, (c, a, c, a), where c is the four circular discs stimulus, and a is
the Kanizsa figure made up of four corner discs.

Fig. 3. a shows the spatial profile of a V1 neuron’s response to the contours
of both real and illusory squares, in a temporal window 100–150 msec after
the square appeared at different spatial placements relative to the receptive
field. This cell responded to the illusory contour when it was at precisely the
same location at which a real contour elicited the maximal response. The cell
also responded significantly better to the illusory contour than to the amodal
contour (t test, p $ 0.003), and did not respond to the rotated corner discs. b
shows the neuron’s response profile to a tiny bar of 0.1° % 0.2° visual angle
placed at different positions along the long-axis of the cell, indicating the
spatial extent of the cell’s receptive field (even when coupled with potential
eye movement jitters) is about 1° visual angle when plotted by a small bar. c
compares the temporal evolution of this cell’s response to the illusory contour,
the amodal contour and the various rotated corner disk controls at the
location where the real contour elicited the maximum response. The response
to the illusory contour emerged at about 100 msec after the illusory square
appeared. The cell responded slightly to the amodal and did not respond to
any of the rotated corner discs. d contrasts this cell’s response to the illusory
contour against its response to the real contours of line square (Fig. 1d), white
square (Fig. 1e ), and gray square (Fig. 1f ). The onset of the response to real
contours was at 45 msec, about 55 msec before the illusory contour response.
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a rectified linear threshold or a sigmoid, (iii) pooling, a nonlinear  
aggregation operation—typically the mean or maximum of local  
values13, and (iv) divisive normalization, correcting output values to 
a standard range17. Not all HCNN incarnations use these operations 
in this order, but most are reasonably similar. All the basic operations 
exist within a single HCNN layer, which is then typically mapped to 
a single cortical area.

Analogously to neural receptive fields, all HCNN operations are 
applied locally, over a fixed-size input zone that is typically smaller 
than the full spatial extent of the input (Fig. 1c). For example, on a 
256 × 256 pixel image, a layer’s receptive fields might be 7 × 7 pixels. 

Because they are spatially overlapping, the filter and pooling operations  
are typically ‘strided’, meaning that output is retained for only a  
fraction of positions along each spatial dimension: a stride of 2 in 
image convolution will skip every second row and column.

In HCNNs, filtering is implemented via convolutional weight shar-
ing, meaning that the same filter templates are applied at all spatial 
locations. Since identical operations are applied everywhere, spatial 
variation in the output arises entirely from spatial variation in the 
input stimulus. It is unlikely the brain literally implements weight 
sharing, since the physiology of the ventral stream and other sensory 
cortices appears to rule out the existence of a single master location in 
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Figure 1 HCNNs as models of sensory  
cortex. (a) The basic framework in which  
sensory cortex is studied is one of encoding—the process by which stimuli are transformed  
into patterns of neural activity—and decoding, the process by which neural activity generates  
behavior. HCNNs have been used to make models of the encoding step; that is, they describe  
the mapping of stimuli to neural responses as measured in brain. (b) The ventral visual pathway is the most comprehensively studied sensory cascade. 
It consists of a series of connected cortical brain areas (macaque brain shown). PIT, posterior inferior temporal cortex; CIT, central; AIT, anterior; 
RGC, retinal ganglion cell; LGN, lateral geniculate nucleus. DoG, difference of Gaussians model; T(•), transformation. (c) HCNNs are multilayer neural 
networks, each of whose layers are made up of a linear-nonlinear (LN) combination of simple operations such as filtering, thresholding, pooling and 
normalization. The filter bank in each layer consists of a set of weights analogous to synaptic strengths. Each filter in the filter bank corresponds to a 
distinct template, analogous to Gabor wavelets with different frequencies and orientations; the image shows a model with four filters in layer 1, eight in 
layer 2, and so on. The operations within a layer are applied locally to spatial patches within the input, corresponding to simple, limited-size receptive 
fields (red boxes). The composition of multiple layers leads to a complex nonlinear transform of the original input stimulus. At each layer, retinopy 
decreases and effective receptive field size increases. HCNNs are good candidates for models of the ventral visual pathway. By definition, they are image 
computable, meaning that they generate responses for arbitrary input images; they are also mappable, meaning that they can be naturally identified in a 
component-wise fashion with observable structures in the ventral pathway; and, when their parameters are chosen correctly, they are predictive, meaning 
that layers within the network describe the neural response patterns to large classes of stimuli outside the domain on which the models were built.

Box 1 Minimal criteria for a sensory encoding model 

We identify three criteria that any encoding model of a sensory cortical system should meet:
Stimulus-computability: The model should accept arbitrary stimuli within the general stimulus domain of interest;
Mappability: The components of the model should correspond to experimentally definable components of the neural system; and
Predictivity: The units of the model should provide detailed predictions of stimulus-by-stimulus responses, for arbitrarily chosen neurons in each 
mapped area.
These criteria may sometimes be in tension—insisting on mappability at the finest grain might hinder identifying models that actually work for complex 
real-world stimuli, since low-level circuit tools may operate best in reduced stimulus regimes. While seeking detailed models of neural circuit connec-
tivity in simplified contexts is important, if such models do not add up in the aggregate to accurate predictors of neural responses to real-world stimuli, 
the utility of their lower-level verisimilitude is limited.
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Though the top hidden layers of these goal-driven models end up 
being predictive of IT cortex data, they were not explicitly tuned to 
do so; indeed, they were not exposed to neural data at all during the 
training procedure. Models thus succeeded in generalizing in two 
ways. First, the models were trained for category recognition using 
real-world photographs of objects in one set of semantic catego-
ries, but were tested against neurons on a completely distinct set of  
synthetically created images containing objects whose semantic cat-
egories were entirely non-overlapping with that used in training. 
Second, the objective function being used to train the network was 

not to fit neural data, but instead the downstream behavioral goal 
(for example, categorization). Model parameters were independently 
selected to optimize categorization performance, and were compared 
with neural data only after all intermediate parameters—for example, 
nonlinear model layers—had already been fixed.

Stated another way, within the class of HCNNs, there appear to be 
comparatively few qualitatively distinct, efficiently learnable solutions 
to high-variation object categorization tasks, and perhaps the brain is 
forced over evolutionary and developmental timescales to pick such a 
solution. To test this hypothesis it would be useful to identify non-HCNN  
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Figure 2 Goal-driven optimization yields neurally predictive models of ventral visual cortex. (a) HCNN models that are better optimized to solve 
object categorization produce hidden layer representations that are better able to predict IT neural response variance. The x axis shows performance 
(balanced accuracy; chance is 50%) of the model output features on a high-variation object categorization task. The y axis shows the median single-
site IT response predictivity of the last hidden layer of the HCNN model, over n = 168 IT sites. Site responses are defined as the mean firing rate 
70–170 ms after image onset. Response predictivity is defined as in Box 2. Each dot corresponds to a distinct HCNN model from a large family of such 
models. Models shown as blue circles were selected by random draws from object categorization performance-optimization; black circles show controls 
and earlier published HCNN models; red squares show the development over time of HCNN models produced during an optimization procedure that 
produces a specific HCNN model33. PLOS09, ref. 15; SIFT, shape-invariant feature transform; HMO, optimized HCNN. (b) Actual neural response 
(black trace) versus model predictions of the last hidden layer of an HCNN model (red trace) for a single IT neural site. The x axis shows 1,600 test 
images, none of which were used to fit the model. Images are sorted first by category identity and then by variation amount, with more drastic image 
transformations toward the right within each category block. The y axis represents the response of the neural site and model prediction for each  
test image. This site demonstrated face selectivity in its responses (see inset images), but predictivity results were similar for other IT sites33.  
(c) Comparison of IT and V4 single-site neural response predictivity for various models. Bar height shows median predictivity, taken over 128 predicted 
units in V4 (left panel) or 168 units in IT (right panel). The last hidden layer of the HCNN model best predicts IT responses, while the second-to-last 
hidden layer best predicts V4 responses. (d) Representational dissimilarity matrices (RDMs) for human IT and HCNN model. Blue color indicates 
low values, where representation treats image pairs as similar; red color indicates high values, where representation treats image pairs as distinct. 
Values range from 0 to 1. (e) RDM similarity, measured with Kendall’s TA, between HCNN model layer features and human V1–V3 (left) or human IT 
(right). Gray horizontal bar represents range of performance of the true model given noise and intersubject variation. Error bars are s.e.m. estimated by 
bootstrap resampling of the stimuli used to compute the RDMs. *P < 0.05, **P < 0.001, ****P < 0.0001 for difference from 0. Panels a–c adapted 
from ref. 33, US National Academy of Sciences; d and e adapted from ref. 35, S.M. Khaligh-Razavi and N. Kriegeskorte.
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Variational Autoencoder
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Contextual prior: surroundings of the visual subfield provide a context to interpret its content

©
20

13
 N

at
ur

e 
A

m
er

ic
a,

 In
c.

  A
ll 

ri
gh

ts
 r

es
er

ve
d.

NATURE NEUROSCIENCE ADVANCE ONLINE PUBLICATION 3

A R T I C L E S

We also made measurements on a subset of cells in which the stim-
uli were confined to each neuron’s classical receptive field. In V1, 
the modulation was near 0 for both classical receptive field–matched 
and large stimuli, though there was a small but significant reduction 
in modulation for the smaller stimuli (P < 0.05, t-test, Fig. 3c). In 
V2, there was a robust but incomplete reduction in modulation for 
the smaller stimuli (P < 0.0001, t-test, Fig. 3d), suggesting that the 
modulation in V2 depended partly, but not entirely, on interactions 
between receptive field center and surround. We found no evidence 
for a relationship in V2 between the modulation and commonly char-
acterized properties of early visual neurons, including surround sup-
pression, orientation tuning bandwidth, preferred spatial frequency, 
spatial frequency tuning bandwidth or parameters of the contrast 

sensitivity function (c50 and exponent) (all correlations P > 0.05). We 
therefore believe that our measurements reveal a hitherto unrecog-
nized dimension of visual processing in macaque V2.

Differentiating V2 from V1 in human
Given the reliable effect of higher-order image statistics on the 
responses of V2 neurons, we wondered if similar effects could be 
observed in humans using fMRI, which can capture large-scale 
 differential responses across visual areas24. We presented alternat-
ing blocks of naturalistic and noise stimuli, one texture family at 
a time, in the near-peripheral visual field while measuring blood-
oxygenation level dependent (BOLD) fMRI responses in visual 
cortex. Subjects performed a demanding task at the center of gaze 

Figure 2 Neuronal responses to naturalistic textures differentiate V2 from V1 in macaques. (a) Time course of firing rate for three single units in V1 
(green) and V2 (blue) to images of naturalistic texture (dark) and spectrally matched noise (light). Thickness of lines indicates s.e.m. across texture 
families. Black bar indicates the presentation of the stimulus; gray bar indicates the presentation of the subsequent stimulus. (b) Time course of firing 
rate averaged across neurons in V1 and V2. Each neuron’s firing rate was normalized by its maximum before averaging. Thickness of lines indicates 
s.e.m. across neurons. (c) Modulation index, computed as the difference between the response to naturalistic and the response to noise, divided by  
their sum. Modulation was computed separately for each neuron and texture family, then averaged across all neurons and families. Thickness of blue 
and green lines indicates s.e.m. across neurons. Thickness of gray shaded region indicates the 2.5th and 97.5th percentiles of the null distribution  
of modulation expected at each time point due to chance. (d) Firing rates for three single units in V1 (green) and V2 (blue) to naturalistic (dark dots) 
and noise (light dots), separately for the 15 texture families. Families are sorted according to the ranking in e. Gray bars connecting points are only  
for visualization of the differential response. Modulation indices (averaged across texture families) are reported in the upper right of each panel. Error 
bars indicate s.e.m. across the 15 samples of each texture family. (e) Diversity in modulation across texture families, averaged across all neurons.  
Error bars indicate s.e.m. across neurons. Gray bar indicates 2.5th and 97.5th percentiles of the null distribution of modulation expected due to 
chance. (f) Distributions of modulation indices across single neurons in V1 and V2. For each neuron, the modulation index for each texture family was 
computed on firing rates averaged in a 100-ms window following response onset, and modulation was then averaged across families.
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Feedforward and feedback computations 
in V1 and V2 in a hierarchical Variational Autoencoder
Ferenc Csikor1,  Balázs Meszéna1,  Gergő Orbán1

1) Computational Systems Neuroscience Lab, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary

Top-Down Variational Autoencoder (TDVAE)

Stimuli

Hierarchical representation: Texture selectivity

Hierarchical representation: Progressive compression

Conclusions
• TDVAE is a principled solution for learning hierarchical VAEs 

• natural images define a hierarchical representation with nonlinear feature hierarchy 

• signatures of high-level statistics representation appear in the form of gradual compression and 
phase sensitivity when tested with texture images, just like in macaque V1 and V2 

• experimental specifics of V1 noise correlations and signatures of contextual priors in the form of 
image inpainting and illusory contours emerge naturally, too
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Program (RGP0044/2018), the National Brain Program (NAP-B KTIA NAP 12-2-201, 2017-1.2.1-
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Motivation
• while supervised models are more commonly used for studying the visual system, unsupervised 

models provide a compelling and developmentally well motivated alternative 
• hierarchical models offer a natural way to study multiple cortical areas 
• Variational Autoencoders are promising tools for constructing generative models 
• to train hierarchical Variational Autoencoders, one needs to carefully select inductive biases 
• we introduce the Top-Down Variational Autoencoder (TDVAE) to learn a hierarchical model of 

natural images and demonstrate that it reproduces several phenomena in primate V1 and V2: 
• quality of latent representation: progressive compression, sensitivity to image statistics 
• quality of inference: high-level structure dependent noise correlations, illusory contours
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and is responsible for these perceptual phenomena, then the
responses of populations of V2 neurons to statistically matched
stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing

responses of a collection of V1 and V2 neurons to images of
synthetic texture, generated to match the statistics of different
texture “families.” V2 responses across families of statistically
matched stimuli were more homogeneous than V1 responses,
reflecting an increased tolerance that was only partly explained
by the larger size of their receptive fields. Using a neural pop-
ulation decoder, we found V2 was better than V1 at discrimi-
nating between-family images matched for different statistics and
worse at discriminating within-family images matched for the
same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs

to define 15 different texture families. These images were per-
ceptually distinct, and human sensitivity to their higher order
statistics spanned a range that was similar to the range found over
a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.

Single Neuron Responses to Naturalistic Texture Stimuli.We recorded
the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
macaque monkeys to these texture stimuli. We presented the stimuli
within a 4° aperture centered on the receptive field of each recorded
neuron. Each of the 225 different stimuli appeared 20 times in
pseudorandom order and was displayed for 100 ms, separated
by 100 ms of uniform gray at the mean luminance. The same
stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses

obtained from spectrally matched (phase-scrambled) noise stimuli
(19). Here, we present a new analysis of these data, which seeks to
determine the relative selectivity and tolerance of V1 and V2
neurons for the different texture families and the image samples
drawn from those families, respectively.
Texture stimuli elicited selective responses in most V1 and V2

neurons (Fig. 1 B and C). Neurons in both V1 and V2 displayed a
characteristic firing rate for each image, with some variability
across presentations. For most texture families, firing rates of V1
neurons were highly variable across the samples (Fig. 1B). In
contrast, V2 neurons exhibited similar firing rates across samples,
as well as more consistent differences in average firing rate across
families (Fig. 1C); that is, V2 neurons appeared to be more tol-
erant to the variations in image detail that occur across samples
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus.
The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.
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and is responsible for these perceptual phenomena, then the
responses of populations of V2 neurons to statistically matched
stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing

responses of a collection of V1 and V2 neurons to images of
synthetic texture, generated to match the statistics of different
texture “families.” V2 responses across families of statistically
matched stimuli were more homogeneous than V1 responses,
reflecting an increased tolerance that was only partly explained
by the larger size of their receptive fields. Using a neural pop-
ulation decoder, we found V2 was better than V1 at discrimi-
nating between-family images matched for different statistics and
worse at discriminating within-family images matched for the
same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs

to define 15 different texture families. These images were per-
ceptually distinct, and human sensitivity to their higher order
statistics spanned a range that was similar to the range found over
a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.

Single Neuron Responses to Naturalistic Texture Stimuli.We recorded
the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
macaque monkeys to these texture stimuli. We presented the stimuli
within a 4° aperture centered on the receptive field of each recorded
neuron. Each of the 225 different stimuli appeared 20 times in
pseudorandom order and was displayed for 100 ms, separated
by 100 ms of uniform gray at the mean luminance. The same
stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses

obtained from spectrally matched (phase-scrambled) noise stimuli
(19). Here, we present a new analysis of these data, which seeks to
determine the relative selectivity and tolerance of V1 and V2
neurons for the different texture families and the image samples
drawn from those families, respectively.
Texture stimuli elicited selective responses in most V1 and V2

neurons (Fig. 1 B and C). Neurons in both V1 and V2 displayed a
characteristic firing rate for each image, with some variability
across presentations. For most texture families, firing rates of V1
neurons were highly variable across the samples (Fig. 1B). In
contrast, V2 neurons exhibited similar firing rates across samples,
as well as more consistent differences in average firing rate across
families (Fig. 1C); that is, V2 neurons appeared to be more tol-
erant to the variations in image detail that occur across samples
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus.
The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.
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V1 discrimination performance from the statistical differences,
over all pairs (Methods and Fig. 6B). The spectral differences
predicted V1 performance well (r = 0.7, P < 0.001), and the same
model also provided a good prediction for V2 performance (r =
0.59, P < 0.001). Reoptimizing the weights to predict V2 re-
sponses barely improved the correlation (r = 0.6, P < 0.001),
consistent with the notion that the spectral information repre-
sented in V2 is directly inherited from V1. However, the spectral
statistics captured little of the difference in performance be-
tween V1 and V2 (r = 0.22, P < 0.05).
These analyses suggest that the superior performance of V2

must be due to the higher order (i.e., beyond second order)
correlations present in the texture model. To test this theory, we
extracted the parameters that capture higher order statistics
through correlations of filter response magnitudes across position,
frequency, and orientation, and projected out the portion cap-
tured by the spectral statistics. We then predicted the difference in
V1 and V2 performance (Fig. 6C). Differences in the higher order

statistics, in contrast to spectral statistics, provided a good pre-
diction for the V1/V2 performance difference (r = 0.61, P < 0.001).
In summary, V1 discrimination performance was well captured

by the spectral statistics of naturalistic textures. This same set of
statistics captured a significant portion of V2 discrimination
performance, but most of the superiority of V2 over V1 comes
from higher order statistics.

Discussion
Our results support the hypothesis that populations of V2 neurons
represent statistics of the activity of local ensembles of V1 neu-
rons, which capture the appearance of naturally occurring tex-
tures. Using a set of stimuli for which these statistics are tightly
controlled, we showed that, relative to neurons in V1, V2 neurons
exhibit increased selectivity for these statistics, accompanied by an
increased tolerance for randomized image variations that do not
affect these statistics. This “tolerance to statistical resampling”
complements the more widely discussed visual invariances to
geometric distortions (e.g., translation, rotation, dilation) (8, 10)
or changes in the intensity, color, or position of a light source (9, 31).
Our results also help to integrate and interpret other findings.

The selectivity of V2 neurons for many artificial stimuli, including
gratings, angles, curves, anomalous contours, and texture-defined
patterns, is nearly the same as the selectivity of V1 neurons (14–
17, 32–35). This result would be expected if V2 neurons are se-
lective for a broad set of V1 response statistics and not for a small
subset of specialized combinations of V1 inputs, as assumed by
these approaches. On the other hand, the tolerance of V2 cells
identified here does seem consistent with the previously identified
behaviors of “complex unoriented” V2 cells (36), which are se-
lective for patches of light of a particular size but tolerant to
changes in position over a much larger region. Such a property
may explain why orientation selectivity so strongly predicted tol-
erance in V2 but less so in V1. This relationship might also reflect
greater heterogeneity of orientation tuning within V2 receptive
fields (16), providing a substrate for computing local orientation
statistics.
Our results complement recent work demonstrating V2 se-

lectivity for third- and fourth-order pixel statistics. Yu et al. (20)
examined responses of V1 and V2 neurons to binary images
synthesized with controlled pixel statistics up to fourth order, and
found that neuronal selectivity for multipoint (i.e., third and
fourth order) correlations is infrequent in V1 but common in V2.
The strength of this work derives from the well-defined stimulus
ensemble, which covers the full set of statistics up to fourth or-
der, and allows a thorough assessment of the selectivity for in-
dividual statistics in the responses of single neurons. On the
other hand, the restriction to statistics of a particular order, al-
though mathematically natural, is not necessarily aligned with the
restrictions imposed by the computational capabilities of bi-
ological visual systems, and this may explain why selectivity of V2
neurons for these statistics is only modestly greater than selectivity
of V1 neurons. The stimuli in our experiments are constrained by
statistics that are defined in terms of an idealized response model
for a V1 population. Although they also constrain multipoint pixel
statistics, they do not isolate them in pure form, and they span too
large a space to allow a thorough experimental characterization of
selectivity in individual cells. On the other hand, they represent
quantities that may be more directly related to the construction of
V2 responses from V1 afferents, and they allow direct synthesis of
stimuli bearing strong perceptual resemblance to their ecological
counterparts (18, 23, 24, 37).
The particular statistics we matched to create our texture

families are surely not represented fully and only in V2, and this
may explain why the reported difference in selectivity and tolerance
between V1 and V2, although robust, is not qualitative. In partic-
ular, these statistics include both the local correlation of oriented
linear filter responses (equivalent to a partial representation of
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cation (red) and sample classification (black). We computed performance
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dot size (n = 1, n = 3, n = 10, n = 30, and n = 100). Chance performance for both
tasks was 1/15. Error bars represent 95% confidence intervals of the boot-
strapped distribution over included neurons and cross-validation partitioning.
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and is responsible for these perceptual phenomena, then the
responses of populations of V2 neurons to statistically matched
stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing

responses of a collection of V1 and V2 neurons to images of
synthetic texture, generated to match the statistics of different
texture “families.” V2 responses across families of statistically
matched stimuli were more homogeneous than V1 responses,
reflecting an increased tolerance that was only partly explained
by the larger size of their receptive fields. Using a neural pop-
ulation decoder, we found V2 was better than V1 at discrimi-
nating between-family images matched for different statistics and
worse at discriminating within-family images matched for the
same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs

to define 15 different texture families. These images were per-
ceptually distinct, and human sensitivity to their higher order
statistics spanned a range that was similar to the range found over
a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.

Single Neuron Responses to Naturalistic Texture Stimuli.We recorded
the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
macaque monkeys to these texture stimuli. We presented the stimuli
within a 4° aperture centered on the receptive field of each recorded
neuron. Each of the 225 different stimuli appeared 20 times in
pseudorandom order and was displayed for 100 ms, separated
by 100 ms of uniform gray at the mean luminance. The same
stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses

obtained from spectrally matched (phase-scrambled) noise stimuli
(19). Here, we present a new analysis of these data, which seeks to
determine the relative selectivity and tolerance of V1 and V2
neurons for the different texture families and the image samples
drawn from those families, respectively.
Texture stimuli elicited selective responses in most V1 and V2

neurons (Fig. 1 B and C). Neurons in both V1 and V2 displayed a
characteristic firing rate for each image, with some variability
across presentations. For most texture families, firing rates of V1
neurons were highly variable across the samples (Fig. 1B). In
contrast, V2 neurons exhibited similar firing rates across samples,
as well as more consistent differences in average firing rate across
families (Fig. 1C); that is, V2 neurons appeared to be more tol-
erant to the variations in image detail that occur across samples
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus.
The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.
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We also made measurements on a subset of cells in which the stim-
uli were confined to each neuron’s classical receptive field. In V1, 
the modulation was near 0 for both classical receptive field–matched 
and large stimuli, though there was a small but significant reduction 
in modulation for the smaller stimuli (P < 0.05, t-test, Fig. 3c). In 
V2, there was a robust but incomplete reduction in modulation for 
the smaller stimuli (P < 0.0001, t-test, Fig. 3d), suggesting that the 
modulation in V2 depended partly, but not entirely, on interactions 
between receptive field center and surround. We found no evidence 
for a relationship in V2 between the modulation and commonly char-
acterized properties of early visual neurons, including surround sup-
pression, orientation tuning bandwidth, preferred spatial frequency, 
spatial frequency tuning bandwidth or parameters of the contrast 

sensitivity function (c50 and exponent) (all correlations P > 0.05). We 
therefore believe that our measurements reveal a hitherto unrecog-
nized dimension of visual processing in macaque V2.

Differentiating V2 from V1 in human
Given the reliable effect of higher-order image statistics on the 
responses of V2 neurons, we wondered if similar effects could be 
observed in humans using fMRI, which can capture large-scale 
 differential responses across visual areas24. We presented alternat-
ing blocks of naturalistic and noise stimuli, one texture family at 
a time, in the near-peripheral visual field while measuring blood-
oxygenation level dependent (BOLD) fMRI responses in visual 
cortex. Subjects performed a demanding task at the center of gaze 

Figure 2 Neuronal responses to naturalistic textures differentiate V2 from V1 in macaques. (a) Time course of firing rate for three single units in V1 
(green) and V2 (blue) to images of naturalistic texture (dark) and spectrally matched noise (light). Thickness of lines indicates s.e.m. across texture 
families. Black bar indicates the presentation of the stimulus; gray bar indicates the presentation of the subsequent stimulus. (b) Time course of firing 
rate averaged across neurons in V1 and V2. Each neuron’s firing rate was normalized by its maximum before averaging. Thickness of lines indicates 
s.e.m. across neurons. (c) Modulation index, computed as the difference between the response to naturalistic and the response to noise, divided by  
their sum. Modulation was computed separately for each neuron and texture family, then averaged across all neurons and families. Thickness of blue 
and green lines indicates s.e.m. across neurons. Thickness of gray shaded region indicates the 2.5th and 97.5th percentiles of the null distribution  
of modulation expected at each time point due to chance. (d) Firing rates for three single units in V1 (green) and V2 (blue) to naturalistic (dark dots) 
and noise (light dots), separately for the 15 texture families. Families are sorted according to the ranking in e. Gray bars connecting points are only  
for visualization of the differential response. Modulation indices (averaged across texture families) are reported in the upper right of each panel. Error 
bars indicate s.e.m. across the 15 samples of each texture family. (e) Diversity in modulation across texture families, averaged across all neurons.  
Error bars indicate s.e.m. across neurons. Gray bar indicates 2.5th and 97.5th percentiles of the null distribution of modulation expected due to 
chance. (f) Distributions of modulation indices across single neurons in V1 and V2. For each neuron, the modulation index for each texture family was 
computed on firing rates averaged in a 100-ms window following response onset, and modulation was then averaged across families.

–0.1

0

0.1

0.2

0.3

M
od

ul
at

io
n 

in
de

x

1 15e
n = 102

n = 103

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 !
rin

g 
ra

te

V2
Naturalistic

Noise

V1b

0 100 200

Time from stimulus onset (ms)

Null

300

–0.1

0

0.1

0.2

M
od

ul
at

io
n 

in
de

x

c
n = 102 n = 103

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

–0.5 0.50 –0.5 0.50

Modulation index Modulation index

P
ro

po
rt

io
n 

of
 c

el
ls

V2V1f

25

0

25

F
iri

ng
 r

at
e 

(im
pu

ls
es

 p
er

 s
)

0
0

Time from stimulus onset (ms)
100 200

15V2

0

10

0

25

0

35

0

F
iri

ng
 r

at
e 

(im
pu

ls
es

 p
er

 s
)

15
Texture family

1 151 151

30

0

40 0.23 0.33 0.23

0.05–0.05–0.03

0

25

0

25

0

30

0

20

0

V1a d

texture families

experiment 
[Freeman et al., 

Nat. Neuro., 2013]

TDVAE model
phase sensitivity in textures

n = 10 n = 103

Mean responses 
of one V1 unit

Mean responses 
of one V2 unit

TD
VA

E 
m

od
el

texture families

in
di

vid
ua

l s
am

pl
es

va
r V

1

var V2 V2
 c

las
sifi

ca
tio

n 
ac

cu
ra

cy

V1 classification accuracy

sample chance

sample 
classification

family 
classification

family chance

ph. s. in textures

original 
image

phase 
scrambled 

image

Texture selectivity emerges for natural image statistics

Losing information at higher levels (lower performance in stimulus identity decoding) 
is compensated by better representation of nonlinear features (texture families)

 responses deteriorate as a consequence of perturbation of high-level statistics in stimuliv2

• hierarchical inference introduces additional expressivity into the  posteriorv1

different model architectures

qϕ(v1 | x) = ∫ qϕ(v1, v2 | x) dv2 ≈ ∑
i

qϕ(v1 | x, v2,i) v2,i ∼ qϕ(v2 | x) v 1
,2

v1,1

corr[qϕ(v1 | x)] = "qϕ(v2 | x) [corr[qϕ(v1 | x, v2)]] + corr ["qϕ(v2 | x)[qϕ(v1 | x, v2)]]
• emergent noise correlations depend on the high-level statistics of the input

noise correlation  (by definition)= 0 dependence on high-level stats ( )v2

x

v1

A ⋅ v1

Texture family 
classification

Texture family 
classification

V1 mean V1 meanV1 correlations V1 correlations
Experimental validation 
• removal of high-level structure reduces top-down influences 
• noise correlations become less specific to stimulus 

• distance of neural response correlations, , is measuredcorr[qϕ(v1 | x)]
experiment 

[Bányai et al., PNAS, 2019]
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Discussion
We recorded population responses from area V1 of awake, task-
engaged monkeys, and investigated how the correlation structure
of V1 activity depends on stimulus content. Our analysis estab-
lished that, upon presentation of natural scenes, the fine struc-
ture of correlations was stimulus specific. Crucially, by designing
synthetic images with controlled statistical structure, we dem-
onstrated that the stimulus specificity of SCCs was dependent on
stimulus complexity: stimuli characterized by low-level structure
elicited reduced stimulus specificity in SCCs, while images
characterized by both low- and high-level structure elicited in-
creased stimulus specificity. We developed a CRM technique
and proved that the fine structure of SCCs could not be trivially
explained by fluctuations in firing rates. Moreover, a decoding
analysis confirmed that knowledge of the correlation structure
was beneficial for decoding information on stimulus identity. We
argued that the stimulus dependence of SCCs is a natural con-
sequence of top-down modulations in the ventral stream: infer-
ences about high-level structure of images provide context for
the interpretation of low-level structure through the internal
dynamics of the cortex. Finally, we showed that, while the
qualitative changes in stimulus specificity of SCCs could be
explained by a probabilistic hierarchical model of perceptual
inference, they could not be accounted for by a range of other
phenomenological models, based on either finite data effects or
simple collective modulations of responses.
Parallel recordings from multiple neurons permit the investigation

of higher-order statistics of neuronal responses. Hence, the assess-
ment of SCCs, commonly addressed as “noise correlations,” has be-
come a central topic in neuroscience (11, 13, 14, 52). Although
measurement of SCCs only concern second-order statistics, accurate
measurement (9, 13) and interpretation of variations in SCCs (53)
proved to be challenging. Factors that affect SCC estimation include
task design, wakefulness, eye movements, firing rate, cortical distance,
tuning similarity, spike isolation, and spike width (13, 47, 48). We
used a paradigm that permits a large number of repetitions, which
limits sample variance in SCC measurements. Although anesthesia
can permit a larger number of repetitions and/or a larger stimulus set,
network-wide changes in the internal dynamics can introduce artificial
correlation structures (19, 54). Using awake and task-engaged mon-
keys eliminates this confound (35). Eye movements have been shown
to contribute to correlations in the visual cortex (55). We introduced
an analysis that sought to reproduce our results under conditions in

which saccades and microsaccades are minimized. This analysis
confirmed a higher SCC specificity for stimuli with high-level struc-
ture immediately after the onset of the attentional cue when the
occurrence of eye movements dwindles. We developed the CRM to
control for firing rate changes across conditions and demonstrated its
power on synthetic data before applying it to physiological data. This
analysis confirmed that our conclusions on stimulus dependence of
correlations were not a consequence of changing firing rates.
Earlier studies in mice used two-photon calcium imaging to

characterize the changes in correlation structure that arise as a re-
sult of changes in stimulus statistics (14, 16), which extended earlier
observations on the effects of stimulus statistics on higher-order
single-cell statistics (52, 56). However, in these studies, pairwise
correlations were assessed in response to movies and sequences of
moving and static gratings, making it impossible to test the pre-
dictions of hierarchical inference on responses to individual stimuli.
Our approach can be regarded as an extension of earlier work

investigating the patterns of mean responses in the hierarchy of
the visual cortex (40). It has been shown that variance in mean
responses in V2 can be well predicted by variations in factors that
determine the statistics necessary for the generation of natural
textures, while variations in mean responses in V1 can be
predicted by variations in statistics at the level of indepen-
dent Gabor-like edge filters. Similarly, contextual modulation of
V1 activity by top-down influences from V2 neurons was dem-
onstrated when high-level inferences were made in artificial
images (24, 25). Furthermore, V1 was shown to receive delayed
top-down influence relative to V2 (24). The long time window we
used in our analysis to limit measurement noise was not effective
to investigate such temporal dynamics in the interactions. Nev-
ertheless, these observations complement our results and are
fully compatible with probabilistic inference in a hierarchical
internal model of natural images, in which mean responses
correspond to the most probable interpretation of the stimulus.
Probabilistic computations require the representation of

probability distributions. Representation of probability distributions
was proposed to be achieved by stochastic sampling (32, 44), which
interprets response variability as a direct consequence of perceptual
uncertainty. The stochastic sampling framework generalizes natu-
rally to hierarchical computations (32). Recently, it was shown that
stimulus dependence of both membrane potential and spike count
variability in V1 can be predicted by a model of natural images (30).
This model, however, lacked the hierarchical structure presented
here and was therefore unable to account for stimulus-dependent
changes in correlation patterns. However, it provided a simple but
important demonstration of contextual modulation of V1 responses:
the assessment of stimulus contrast for a complete image patch af-
fected the interpretation of local image elements (57). Such con-
textual modulation was shown to result in divisive normalization
(39). Divisive normalization and more specifically surround sup-
pression (58) are algorithmic motifs that can realize the computa-
tional principles put forward in our study. Such algorithmic motifs
provide the nervous system with tools to calculate the quantities
required by the functional model proposed here, and thus can
highlight how processes within V1 can contribute to hierarchical
inference. Our results fit naturally in the sampling framework by
assuming that neural activity patterns represent multivariate samples
from the probability distributions both at the level of V1 and higher-
level areas, for example, V2 (Fig. 1).

Alternative Interpretations. Patterns in higher-order statistics of
neuronal responses beyond the mean activity, namely single-cell
variability and SCCs, have been observed in association with task-
related modulatory effects, such as those driven by attention (18,
19, 59) and in association with stimulus-related modulatory effects,
such as those occurring during the perception of natural scenes (14,
52, 56). Computations underlying both of these processes invoke
high-level inferences: inference of task variables in the case of at-
tention and inference of high-level stimulus features, for example,
object identity, in the case of perception. In both cases, inference of
high-level variables breaks the feedforward processing hierarchy in

V2 synthetic V1 synthetic

0.05

0.1

0.15

co
rr

el
at

io
n

di
ss

im
ila

rit
y

***

V2 synthetic V1 synthetic
0.05

0.1

0.15
***

Condition B

V1 synthetic

2

4

6

fir
in

g 
ra

te
di

ss
im

ila
rit

y

Original

***

2

4

6

Matched

n.s.

Condition A

V2 synthetic

A B C

Fig. 7. Comparison of stimulus specificity of correlation patterns evoked by
stimuli with different levels of statistical structure. (A) Condition A, a set of
synthetic image patches in which filter co-occurrences define a texture
structure (HL-synthetic stimuli); condition B, a set of synthetic image patches
generated from a V1 model of images (LL-synthetic stimuli). (B) Stimulus
specificity of firing rate responses (Top) and SCC patterns (Bottom) in the
original (unmatched) data. While correlations show higher specificity for HL-
synthetic images, specificity of firing rate responses is also higher in the first
condition. The baseline for correlation dissimilarity is set to the baseline used
in Fig. 5. (C) Firing and correlation dissimilarities after applying the CRM
procedure. CRM eliminates stimulus specificity of firing rate responses, but
the residual dissimilarity of SCCs is still significantly higher for HL-synthetic
stimuli than that for LL-synthetic stimuli.
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Discussion
We recorded population responses from area V1 of awake, task-
engaged monkeys, and investigated how the correlation structure
of V1 activity depends on stimulus content. Our analysis estab-
lished that, upon presentation of natural scenes, the fine struc-
ture of correlations was stimulus specific. Crucially, by designing
synthetic images with controlled statistical structure, we dem-
onstrated that the stimulus specificity of SCCs was dependent on
stimulus complexity: stimuli characterized by low-level structure
elicited reduced stimulus specificity in SCCs, while images
characterized by both low- and high-level structure elicited in-
creased stimulus specificity. We developed a CRM technique
and proved that the fine structure of SCCs could not be trivially
explained by fluctuations in firing rates. Moreover, a decoding
analysis confirmed that knowledge of the correlation structure
was beneficial for decoding information on stimulus identity. We
argued that the stimulus dependence of SCCs is a natural con-
sequence of top-down modulations in the ventral stream: infer-
ences about high-level structure of images provide context for
the interpretation of low-level structure through the internal
dynamics of the cortex. Finally, we showed that, while the
qualitative changes in stimulus specificity of SCCs could be
explained by a probabilistic hierarchical model of perceptual
inference, they could not be accounted for by a range of other
phenomenological models, based on either finite data effects or
simple collective modulations of responses.
Parallel recordings from multiple neurons permit the investigation

of higher-order statistics of neuronal responses. Hence, the assess-
ment of SCCs, commonly addressed as “noise correlations,” has be-
come a central topic in neuroscience (11, 13, 14, 52). Although
measurement of SCCs only concern second-order statistics, accurate
measurement (9, 13) and interpretation of variations in SCCs (53)
proved to be challenging. Factors that affect SCC estimation include
task design, wakefulness, eye movements, firing rate, cortical distance,
tuning similarity, spike isolation, and spike width (13, 47, 48). We
used a paradigm that permits a large number of repetitions, which
limits sample variance in SCC measurements. Although anesthesia
can permit a larger number of repetitions and/or a larger stimulus set,
network-wide changes in the internal dynamics can introduce artificial
correlation structures (19, 54). Using awake and task-engaged mon-
keys eliminates this confound (35). Eye movements have been shown
to contribute to correlations in the visual cortex (55). We introduced
an analysis that sought to reproduce our results under conditions in

which saccades and microsaccades are minimized. This analysis
confirmed a higher SCC specificity for stimuli with high-level struc-
ture immediately after the onset of the attentional cue when the
occurrence of eye movements dwindles. We developed the CRM to
control for firing rate changes across conditions and demonstrated its
power on synthetic data before applying it to physiological data. This
analysis confirmed that our conclusions on stimulus dependence of
correlations were not a consequence of changing firing rates.
Earlier studies in mice used two-photon calcium imaging to

characterize the changes in correlation structure that arise as a re-
sult of changes in stimulus statistics (14, 16), which extended earlier
observations on the effects of stimulus statistics on higher-order
single-cell statistics (52, 56). However, in these studies, pairwise
correlations were assessed in response to movies and sequences of
moving and static gratings, making it impossible to test the pre-
dictions of hierarchical inference on responses to individual stimuli.
Our approach can be regarded as an extension of earlier work

investigating the patterns of mean responses in the hierarchy of
the visual cortex (40). It has been shown that variance in mean
responses in V2 can be well predicted by variations in factors that
determine the statistics necessary for the generation of natural
textures, while variations in mean responses in V1 can be
predicted by variations in statistics at the level of indepen-
dent Gabor-like edge filters. Similarly, contextual modulation of
V1 activity by top-down influences from V2 neurons was dem-
onstrated when high-level inferences were made in artificial
images (24, 25). Furthermore, V1 was shown to receive delayed
top-down influence relative to V2 (24). The long time window we
used in our analysis to limit measurement noise was not effective
to investigate such temporal dynamics in the interactions. Nev-
ertheless, these observations complement our results and are
fully compatible with probabilistic inference in a hierarchical
internal model of natural images, in which mean responses
correspond to the most probable interpretation of the stimulus.
Probabilistic computations require the representation of

probability distributions. Representation of probability distributions
was proposed to be achieved by stochastic sampling (32, 44), which
interprets response variability as a direct consequence of perceptual
uncertainty. The stochastic sampling framework generalizes natu-
rally to hierarchical computations (32). Recently, it was shown that
stimulus dependence of both membrane potential and spike count
variability in V1 can be predicted by a model of natural images (30).
This model, however, lacked the hierarchical structure presented
here and was therefore unable to account for stimulus-dependent
changes in correlation patterns. However, it provided a simple but
important demonstration of contextual modulation of V1 responses:
the assessment of stimulus contrast for a complete image patch af-
fected the interpretation of local image elements (57). Such con-
textual modulation was shown to result in divisive normalization
(39). Divisive normalization and more specifically surround sup-
pression (58) are algorithmic motifs that can realize the computa-
tional principles put forward in our study. Such algorithmic motifs
provide the nervous system with tools to calculate the quantities
required by the functional model proposed here, and thus can
highlight how processes within V1 can contribute to hierarchical
inference. Our results fit naturally in the sampling framework by
assuming that neural activity patterns represent multivariate samples
from the probability distributions both at the level of V1 and higher-
level areas, for example, V2 (Fig. 1).

Alternative Interpretations. Patterns in higher-order statistics of
neuronal responses beyond the mean activity, namely single-cell
variability and SCCs, have been observed in association with task-
related modulatory effects, such as those driven by attention (18,
19, 59) and in association with stimulus-related modulatory effects,
such as those occurring during the perception of natural scenes (14,
52, 56). Computations underlying both of these processes invoke
high-level inferences: inference of task variables in the case of at-
tention and inference of high-level stimulus features, for example,
object identity, in the case of perception. In both cases, inference of
high-level variables breaks the feedforward processing hierarchy in
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Fig. 7. Comparison of stimulus specificity of correlation patterns evoked by
stimuli with different levels of statistical structure. (A) Condition A, a set of
synthetic image patches in which filter co-occurrences define a texture
structure (HL-synthetic stimuli); condition B, a set of synthetic image patches
generated from a V1 model of images (LL-synthetic stimuli). (B) Stimulus
specificity of firing rate responses (Top) and SCC patterns (Bottom) in the
original (unmatched) data. While correlations show higher specificity for HL-
synthetic images, specificity of firing rate responses is also higher in the first
condition. The baseline for correlation dissimilarity is set to the baseline used
in Fig. 5. (C) Firing and correlation dissimilarities after applying the CRM
procedure. CRM eliminates stimulus specificity of firing rate responses, but
the residual dissimilarity of SCCs is still significantly higher for HL-synthetic
stimuli than that for LL-synthetic stimuli.
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Discussion
We recorded population responses from area V1 of awake, task-
engaged monkeys, and investigated how the correlation structure
of V1 activity depends on stimulus content. Our analysis estab-
lished that, upon presentation of natural scenes, the fine struc-
ture of correlations was stimulus specific. Crucially, by designing
synthetic images with controlled statistical structure, we dem-
onstrated that the stimulus specificity of SCCs was dependent on
stimulus complexity: stimuli characterized by low-level structure
elicited reduced stimulus specificity in SCCs, while images
characterized by both low- and high-level structure elicited in-
creased stimulus specificity. We developed a CRM technique
and proved that the fine structure of SCCs could not be trivially
explained by fluctuations in firing rates. Moreover, a decoding
analysis confirmed that knowledge of the correlation structure
was beneficial for decoding information on stimulus identity. We
argued that the stimulus dependence of SCCs is a natural con-
sequence of top-down modulations in the ventral stream: infer-
ences about high-level structure of images provide context for
the interpretation of low-level structure through the internal
dynamics of the cortex. Finally, we showed that, while the
qualitative changes in stimulus specificity of SCCs could be
explained by a probabilistic hierarchical model of perceptual
inference, they could not be accounted for by a range of other
phenomenological models, based on either finite data effects or
simple collective modulations of responses.
Parallel recordings from multiple neurons permit the investigation

of higher-order statistics of neuronal responses. Hence, the assess-
ment of SCCs, commonly addressed as “noise correlations,” has be-
come a central topic in neuroscience (11, 13, 14, 52). Although
measurement of SCCs only concern second-order statistics, accurate
measurement (9, 13) and interpretation of variations in SCCs (53)
proved to be challenging. Factors that affect SCC estimation include
task design, wakefulness, eye movements, firing rate, cortical distance,
tuning similarity, spike isolation, and spike width (13, 47, 48). We
used a paradigm that permits a large number of repetitions, which
limits sample variance in SCC measurements. Although anesthesia
can permit a larger number of repetitions and/or a larger stimulus set,
network-wide changes in the internal dynamics can introduce artificial
correlation structures (19, 54). Using awake and task-engaged mon-
keys eliminates this confound (35). Eye movements have been shown
to contribute to correlations in the visual cortex (55). We introduced
an analysis that sought to reproduce our results under conditions in

which saccades and microsaccades are minimized. This analysis
confirmed a higher SCC specificity for stimuli with high-level struc-
ture immediately after the onset of the attentional cue when the
occurrence of eye movements dwindles. We developed the CRM to
control for firing rate changes across conditions and demonstrated its
power on synthetic data before applying it to physiological data. This
analysis confirmed that our conclusions on stimulus dependence of
correlations were not a consequence of changing firing rates.
Earlier studies in mice used two-photon calcium imaging to

characterize the changes in correlation structure that arise as a re-
sult of changes in stimulus statistics (14, 16), which extended earlier
observations on the effects of stimulus statistics on higher-order
single-cell statistics (52, 56). However, in these studies, pairwise
correlations were assessed in response to movies and sequences of
moving and static gratings, making it impossible to test the pre-
dictions of hierarchical inference on responses to individual stimuli.
Our approach can be regarded as an extension of earlier work

investigating the patterns of mean responses in the hierarchy of
the visual cortex (40). It has been shown that variance in mean
responses in V2 can be well predicted by variations in factors that
determine the statistics necessary for the generation of natural
textures, while variations in mean responses in V1 can be
predicted by variations in statistics at the level of indepen-
dent Gabor-like edge filters. Similarly, contextual modulation of
V1 activity by top-down influences from V2 neurons was dem-
onstrated when high-level inferences were made in artificial
images (24, 25). Furthermore, V1 was shown to receive delayed
top-down influence relative to V2 (24). The long time window we
used in our analysis to limit measurement noise was not effective
to investigate such temporal dynamics in the interactions. Nev-
ertheless, these observations complement our results and are
fully compatible with probabilistic inference in a hierarchical
internal model of natural images, in which mean responses
correspond to the most probable interpretation of the stimulus.
Probabilistic computations require the representation of

probability distributions. Representation of probability distributions
was proposed to be achieved by stochastic sampling (32, 44), which
interprets response variability as a direct consequence of perceptual
uncertainty. The stochastic sampling framework generalizes natu-
rally to hierarchical computations (32). Recently, it was shown that
stimulus dependence of both membrane potential and spike count
variability in V1 can be predicted by a model of natural images (30).
This model, however, lacked the hierarchical structure presented
here and was therefore unable to account for stimulus-dependent
changes in correlation patterns. However, it provided a simple but
important demonstration of contextual modulation of V1 responses:
the assessment of stimulus contrast for a complete image patch af-
fected the interpretation of local image elements (57). Such con-
textual modulation was shown to result in divisive normalization
(39). Divisive normalization and more specifically surround sup-
pression (58) are algorithmic motifs that can realize the computa-
tional principles put forward in our study. Such algorithmic motifs
provide the nervous system with tools to calculate the quantities
required by the functional model proposed here, and thus can
highlight how processes within V1 can contribute to hierarchical
inference. Our results fit naturally in the sampling framework by
assuming that neural activity patterns represent multivariate samples
from the probability distributions both at the level of V1 and higher-
level areas, for example, V2 (Fig. 1).

Alternative Interpretations. Patterns in higher-order statistics of
neuronal responses beyond the mean activity, namely single-cell
variability and SCCs, have been observed in association with task-
related modulatory effects, such as those driven by attention (18,
19, 59) and in association with stimulus-related modulatory effects,
such as those occurring during the perception of natural scenes (14,
52, 56). Computations underlying both of these processes invoke
high-level inferences: inference of task variables in the case of at-
tention and inference of high-level stimulus features, for example,
object identity, in the case of perception. In both cases, inference of
high-level variables breaks the feedforward processing hierarchy in
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Fig. 7. Comparison of stimulus specificity of correlation patterns evoked by
stimuli with different levels of statistical structure. (A) Condition A, a set of
synthetic image patches in which filter co-occurrences define a texture
structure (HL-synthetic stimuli); condition B, a set of synthetic image patches
generated from a V1 model of images (LL-synthetic stimuli). (B) Stimulus
specificity of firing rate responses (Top) and SCC patterns (Bottom) in the
original (unmatched) data. While correlations show higher specificity for HL-
synthetic images, specificity of firing rate responses is also higher in the first
condition. The baseline for correlation dissimilarity is set to the baseline used
in Fig. 5. (C) Firing and correlation dissimilarities after applying the CRM
procedure. CRM eliminates stimulus specificity of firing rate responses, but
the residual dissimilarity of SCCs is still significantly higher for HL-synthetic
stimuli than that for LL-synthetic stimuli.
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• texture family specific responses in  → texture family specific correlations in  

• this can be tested in the TDVAE model by decoding texture families from posterior  correlations

v2 v1
v1

 provides an expressive posterior for : v2 v1 qϕ(v1 | x) = ∫ qϕ(v1, v2 | x) dv2

2. form of joint posterior (feed-forward alternative: ):qϕ(v2 | v1) ⋅ qϕ(v1 | x)

3. goal function to maximize (ELBO):

1. Markovian-structured generative model:
pθ(x, v1, v2) = pθ(x | v1) ⋅ pθ(v1 | v2) ⋅ p(v2)

qϕ(v1, v2 | x) = qϕ(v1 | x, v2) ⋅ qϕ(v2 | x)

− "qϕ(v2 | x)KL [qϕ(v1 | x, v2) | | pθ(v1 | v2)] − KL [qϕ(v2 | x) | | p(v2)]
ℒ(x, θ, ϕ) = "qϕ(v1,v2 | x) [log pθ(x | v1)]−
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Illusory contours

eccentricity, the receptive fields of V1 neurons studied ranged
from 0.3° to 1°, whereas those of V2 neurons ranged from 0.7°
to 2°. As we sought to understand how the same stimuli were
processed by the different cortical areas, we did not vary the size
of the test stimuli.

Fig. 3 presents the findings from a V1S neuron. Fig. 3 a and
c show that this cell responded significantly more to the illusory
contour than to the amodal condition (Fig. 1b) or to all of the
rotated corner disk configurations (Fig. 1 i–l). The illusory
contour elicited a response when it was placed at precisely the
same location at which a real contour elicited the maximum
response (Fig. 3a). However, the response to the illusory contour
appeared at 100 msec after the appearance of the Kanizsa
square, as compared with 45 msec for a real square (Fig. 3d).

We characterized a cell’s illusory contour responsiveness, or
its illusory contour response, by the following two modulation
indices: IC1 ! (Ri " Ra)!(Ri # Ra) and IC2 ! (Ri " Rr)!(Ri # Rr),
where Ri is the response to the illusory contour, Ra is the
response to the amodal condition, and Rr is the response to the

Fig. 1. Stimulus set used in the experiment. (a) Kanizsa figure made up of
four corner discs (pac-men). (b) Amodal figure (a gray square in a black
background partially occluded by a foreground surface with four apertures).
(c) Four circular discs. (d) Line square. (e) White square. ( f) Gray square. (g) Line
Square with four corner discs. (h) White square with four corner discs. (i–l)
Various configurations of the rotated corners. According to Kanizsa’s defini-
tion, amodal presence refers to the completion of part of an object that is not
directly visible because it is covered by another object. In b, we can see a gray
square against a black background behind a gray wall with four apertures. The
amodal contour of the gray square is not as immediately ‘‘visible’’ as the
subjective contour of the Kanizsa figure (a). For a cell selective for horizontal
edges, only the bottom horizontal contour and its neighboring positions
would be placed on the cell’s receptive field in a manner shown in Fig. 2a. For
cells with different orientation preference, each of the stimuli was rotated
accordingly so that the orientation preference of the cell was aligned with the
illusory contour. The five sequences used were: (c, a, c, a), (c, b, c, e), (c, g, c, h),
(m, d, m, f ), and (i, j, k, l), where the symbols stand for the defined above, and
m stands for the gray screen condition. (i, j, k, l) was designed to create the
perception that the four corner discs were rotating independently on screen
in a single trial. Later on, we also tested a sixth sequence, (c, j, c, l).

Fig. 2. a illustrates the spatial relationship between the fixation spot (black
dot), the cell’s receptive field (circle), and the stimulus figure. The cell’s
receptive field was placed in the middle of the illusory contour at the bottom
of the Kanizsa figure, for a cell selective for horizontal orientation. For cells of
other orientations, the stimuli were rotated accordingly so that the contour
was parallel with the preferred orientation of the cell. The stimulus was
presented in ten locations 0.25° apart in successive trials relative to the
receptive field so that the illusory contour was collinear with the ten line
segments as shown in the figure. b illustrates the presentation of the Kanizsa
square sequence, (c, a, c, a), where c is the four circular discs stimulus, and a is
the Kanizsa figure made up of four corner discs.

Fig. 3. a shows the spatial profile of a V1 neuron’s response to the contours
of both real and illusory squares, in a temporal window 100–150 msec after
the square appeared at different spatial placements relative to the receptive
field. This cell responded to the illusory contour when it was at precisely the
same location at which a real contour elicited the maximal response. The cell
also responded significantly better to the illusory contour than to the amodal
contour (t test, p $ 0.003), and did not respond to the rotated corner discs. b
shows the neuron’s response profile to a tiny bar of 0.1° % 0.2° visual angle
placed at different positions along the long-axis of the cell, indicating the
spatial extent of the cell’s receptive field (even when coupled with potential
eye movement jitters) is about 1° visual angle when plotted by a small bar. c
compares the temporal evolution of this cell’s response to the illusory contour,
the amodal contour and the various rotated corner disk controls at the
location where the real contour elicited the maximum response. The response
to the illusory contour emerged at about 100 msec after the illusory square
appeared. The cell responded slightly to the amodal and did not respond to
any of the rotated corner discs. d contrasts this cell’s response to the illusory
contour against its response to the real contours of line square (Fig. 1d), white
square (Fig. 1e ), and gray square (Fig. 1f ). The onset of the response to real
contours was at 45 msec, about 55 msec before the illusory contour response.

1908 " www.pnas.org Lee and Nguyen

macaque V1 neural response

re
sp

on
se

 in
te

ns
ity

vertical shift of square

experiment 
[Lee & Nguyen, PNAS, 2001]

re
sp

on
se

 in
te

ns
ity

vertical shift of square

TDVAE model

 responsev1

m
as

ke
d 

 
re

sp
on

sev 1

linear response
hierarchical inferenceTDVAE model

example 
filter

Image 
inpainting

original 
stimuli

masked 
stimuli

• minimization of the term in the ELBO leads to a match 

between the variational posterior and a  conditioned prior 

• by applying the Bayes rule:  

• that is, the high-level structure of the stimulus by itself can determine the response of  units 
• we study this phenomenon with image inpainting and illusory contour experiments

"qϕ(v2 | x)KL [qϕ(v1 | x, v2) | | pθ(v1 | v2)]
v2
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We also made measurements on a subset of cells in which the stim-
uli were confined to each neuron’s classical receptive field. In V1, 
the modulation was near 0 for both classical receptive field–matched 
and large stimuli, though there was a small but significant reduction 
in modulation for the smaller stimuli (P < 0.05, t-test, Fig. 3c). In 
V2, there was a robust but incomplete reduction in modulation for 
the smaller stimuli (P < 0.0001, t-test, Fig. 3d), suggesting that the 
modulation in V2 depended partly, but not entirely, on interactions 
between receptive field center and surround. We found no evidence 
for a relationship in V2 between the modulation and commonly char-
acterized properties of early visual neurons, including surround sup-
pression, orientation tuning bandwidth, preferred spatial frequency, 
spatial frequency tuning bandwidth or parameters of the contrast 

sensitivity function (c50 and exponent) (all correlations P > 0.05). We 
therefore believe that our measurements reveal a hitherto unrecog-
nized dimension of visual processing in macaque V2.

Differentiating V2 from V1 in human
Given the reliable effect of higher-order image statistics on the 
responses of V2 neurons, we wondered if similar effects could be 
observed in humans using fMRI, which can capture large-scale 
 differential responses across visual areas24. We presented alternat-
ing blocks of naturalistic and noise stimuli, one texture family at 
a time, in the near-peripheral visual field while measuring blood-
oxygenation level dependent (BOLD) fMRI responses in visual 
cortex. Subjects performed a demanding task at the center of gaze 

Figure 2 Neuronal responses to naturalistic textures differentiate V2 from V1 in macaques. (a) Time course of firing rate for three single units in V1 
(green) and V2 (blue) to images of naturalistic texture (dark) and spectrally matched noise (light). Thickness of lines indicates s.e.m. across texture 
families. Black bar indicates the presentation of the stimulus; gray bar indicates the presentation of the subsequent stimulus. (b) Time course of firing 
rate averaged across neurons in V1 and V2. Each neuron’s firing rate was normalized by its maximum before averaging. Thickness of lines indicates 
s.e.m. across neurons. (c) Modulation index, computed as the difference between the response to naturalistic and the response to noise, divided by  
their sum. Modulation was computed separately for each neuron and texture family, then averaged across all neurons and families. Thickness of blue 
and green lines indicates s.e.m. across neurons. Thickness of gray shaded region indicates the 2.5th and 97.5th percentiles of the null distribution  
of modulation expected at each time point due to chance. (d) Firing rates for three single units in V1 (green) and V2 (blue) to naturalistic (dark dots) 
and noise (light dots), separately for the 15 texture families. Families are sorted according to the ranking in e. Gray bars connecting points are only  
for visualization of the differential response. Modulation indices (averaged across texture families) are reported in the upper right of each panel. Error 
bars indicate s.e.m. across the 15 samples of each texture family. (e) Diversity in modulation across texture families, averaged across all neurons.  
Error bars indicate s.e.m. across neurons. Gray bar indicates 2.5th and 97.5th percentiles of the null distribution of modulation expected due to 
chance. (f) Distributions of modulation indices across single neurons in V1 and V2. For each neuron, the modulation index for each texture family was 
computed on firing rates averaged in a 100-ms window following response onset, and modulation was then averaged across families.
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Feedforward and feedback computations 
in V1 and V2 in a hierarchical Variational Autoencoder
Ferenc Csikor1,  Balázs Meszéna1,  Gergő Orbán1

1) Computational Systems Neuroscience Lab, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary

Top-Down Variational Autoencoder (TDVAE)

Stimuli

Hierarchical representation: Texture selectivity

Hierarchical representation: Progressive compression

Conclusions
• TDVAE is a principled solution for learning hierarchical VAEs 

• natural images define a hierarchical representation with nonlinear feature hierarchy 

• signatures of high-level statistics representation appear in the form of gradual compression and 
phase sensitivity when tested with texture images, just like in macaque V1 and V2 

• experimental specifics of V1 noise correlations and signatures of contextual priors in the form of 
image inpainting and illusory contours emerge naturally, too
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NKP-2017-00002), and the Artificial Intelligence National Laboratory (NKFIH-1530-4/2021).

Motivation
• while supervised models are more commonly used for studying the visual system, unsupervised 

models provide a compelling and developmentally well motivated alternative 
• hierarchical models offer a natural way to study multiple cortical areas 
• Variational Autoencoders are promising tools for constructing generative models 
• to train hierarchical Variational Autoencoders, one needs to carefully select inductive biases 
• we introduce the Top-Down Variational Autoencoder (TDVAE) to learn a hierarchical model of 

natural images and demonstrate that it reproduces several phenomena in primate V1 and V2: 
• quality of latent representation: progressive compression, sensitivity to image statistics 
• quality of inference: high-level structure dependent noise correlations, illusory contours
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and is responsible for these perceptual phenomena, then the
responses of populations of V2 neurons to statistically matched
stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing

responses of a collection of V1 and V2 neurons to images of
synthetic texture, generated to match the statistics of different
texture “families.” V2 responses across families of statistically
matched stimuli were more homogeneous than V1 responses,
reflecting an increased tolerance that was only partly explained
by the larger size of their receptive fields. Using a neural pop-
ulation decoder, we found V2 was better than V1 at discrimi-
nating between-family images matched for different statistics and
worse at discriminating within-family images matched for the
same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs

to define 15 different texture families. These images were per-
ceptually distinct, and human sensitivity to their higher order
statistics spanned a range that was similar to the range found over
a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.

Single Neuron Responses to Naturalistic Texture Stimuli.We recorded
the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
macaque monkeys to these texture stimuli. We presented the stimuli
within a 4° aperture centered on the receptive field of each recorded
neuron. Each of the 225 different stimuli appeared 20 times in
pseudorandom order and was displayed for 100 ms, separated
by 100 ms of uniform gray at the mean luminance. The same
stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses

obtained from spectrally matched (phase-scrambled) noise stimuli
(19). Here, we present a new analysis of these data, which seeks to
determine the relative selectivity and tolerance of V1 and V2
neurons for the different texture families and the image samples
drawn from those families, respectively.
Texture stimuli elicited selective responses in most V1 and V2

neurons (Fig. 1 B and C). Neurons in both V1 and V2 displayed a
characteristic firing rate for each image, with some variability
across presentations. For most texture families, firing rates of V1
neurons were highly variable across the samples (Fig. 1B). In
contrast, V2 neurons exhibited similar firing rates across samples,
as well as more consistent differences in average firing rate across
families (Fig. 1C); that is, V2 neurons appeared to be more tol-
erant to the variations in image detail that occur across samples
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus.
The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.
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and is responsible for these perceptual phenomena, then the
responses of populations of V2 neurons to statistically matched
stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing

responses of a collection of V1 and V2 neurons to images of
synthetic texture, generated to match the statistics of different
texture “families.” V2 responses across families of statistically
matched stimuli were more homogeneous than V1 responses,
reflecting an increased tolerance that was only partly explained
by the larger size of their receptive fields. Using a neural pop-
ulation decoder, we found V2 was better than V1 at discrimi-
nating between-family images matched for different statistics and
worse at discriminating within-family images matched for the
same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs

to define 15 different texture families. These images were per-
ceptually distinct, and human sensitivity to their higher order
statistics spanned a range that was similar to the range found over
a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.

Single Neuron Responses to Naturalistic Texture Stimuli.We recorded
the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
macaque monkeys to these texture stimuli. We presented the stimuli
within a 4° aperture centered on the receptive field of each recorded
neuron. Each of the 225 different stimuli appeared 20 times in
pseudorandom order and was displayed for 100 ms, separated
by 100 ms of uniform gray at the mean luminance. The same
stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses

obtained from spectrally matched (phase-scrambled) noise stimuli
(19). Here, we present a new analysis of these data, which seeks to
determine the relative selectivity and tolerance of V1 and V2
neurons for the different texture families and the image samples
drawn from those families, respectively.
Texture stimuli elicited selective responses in most V1 and V2

neurons (Fig. 1 B and C). Neurons in both V1 and V2 displayed a
characteristic firing rate for each image, with some variability
across presentations. For most texture families, firing rates of V1
neurons were highly variable across the samples (Fig. 1B). In
contrast, V2 neurons exhibited similar firing rates across samples,
as well as more consistent differences in average firing rate across
families (Fig. 1C); that is, V2 neurons appeared to be more tol-
erant to the variations in image detail that occur across samples
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus.
The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.
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V1 discrimination performance from the statistical differences,
over all pairs (Methods and Fig. 6B). The spectral differences
predicted V1 performance well (r = 0.7, P < 0.001), and the same
model also provided a good prediction for V2 performance (r =
0.59, P < 0.001). Reoptimizing the weights to predict V2 re-
sponses barely improved the correlation (r = 0.6, P < 0.001),
consistent with the notion that the spectral information repre-
sented in V2 is directly inherited from V1. However, the spectral
statistics captured little of the difference in performance be-
tween V1 and V2 (r = 0.22, P < 0.05).
These analyses suggest that the superior performance of V2

must be due to the higher order (i.e., beyond second order)
correlations present in the texture model. To test this theory, we
extracted the parameters that capture higher order statistics
through correlations of filter response magnitudes across position,
frequency, and orientation, and projected out the portion cap-
tured by the spectral statistics. We then predicted the difference in
V1 and V2 performance (Fig. 6C). Differences in the higher order

statistics, in contrast to spectral statistics, provided a good pre-
diction for the V1/V2 performance difference (r = 0.61, P < 0.001).
In summary, V1 discrimination performance was well captured

by the spectral statistics of naturalistic textures. This same set of
statistics captured a significant portion of V2 discrimination
performance, but most of the superiority of V2 over V1 comes
from higher order statistics.

Discussion
Our results support the hypothesis that populations of V2 neurons
represent statistics of the activity of local ensembles of V1 neu-
rons, which capture the appearance of naturally occurring tex-
tures. Using a set of stimuli for which these statistics are tightly
controlled, we showed that, relative to neurons in V1, V2 neurons
exhibit increased selectivity for these statistics, accompanied by an
increased tolerance for randomized image variations that do not
affect these statistics. This “tolerance to statistical resampling”
complements the more widely discussed visual invariances to
geometric distortions (e.g., translation, rotation, dilation) (8, 10)
or changes in the intensity, color, or position of a light source (9, 31).
Our results also help to integrate and interpret other findings.

The selectivity of V2 neurons for many artificial stimuli, including
gratings, angles, curves, anomalous contours, and texture-defined
patterns, is nearly the same as the selectivity of V1 neurons (14–
17, 32–35). This result would be expected if V2 neurons are se-
lective for a broad set of V1 response statistics and not for a small
subset of specialized combinations of V1 inputs, as assumed by
these approaches. On the other hand, the tolerance of V2 cells
identified here does seem consistent with the previously identified
behaviors of “complex unoriented” V2 cells (36), which are se-
lective for patches of light of a particular size but tolerant to
changes in position over a much larger region. Such a property
may explain why orientation selectivity so strongly predicted tol-
erance in V2 but less so in V1. This relationship might also reflect
greater heterogeneity of orientation tuning within V2 receptive
fields (16), providing a substrate for computing local orientation
statistics.
Our results complement recent work demonstrating V2 se-

lectivity for third- and fourth-order pixel statistics. Yu et al. (20)
examined responses of V1 and V2 neurons to binary images
synthesized with controlled pixel statistics up to fourth order, and
found that neuronal selectivity for multipoint (i.e., third and
fourth order) correlations is infrequent in V1 but common in V2.
The strength of this work derives from the well-defined stimulus
ensemble, which covers the full set of statistics up to fourth or-
der, and allows a thorough assessment of the selectivity for in-
dividual statistics in the responses of single neurons. On the
other hand, the restriction to statistics of a particular order, al-
though mathematically natural, is not necessarily aligned with the
restrictions imposed by the computational capabilities of bi-
ological visual systems, and this may explain why selectivity of V2
neurons for these statistics is only modestly greater than selectivity
of V1 neurons. The stimuli in our experiments are constrained by
statistics that are defined in terms of an idealized response model
for a V1 population. Although they also constrain multipoint pixel
statistics, they do not isolate them in pure form, and they span too
large a space to allow a thorough experimental characterization of
selectivity in individual cells. On the other hand, they represent
quantities that may be more directly related to the construction of
V2 responses from V1 afferents, and they allow direct synthesis of
stimuli bearing strong perceptual resemblance to their ecological
counterparts (18, 23, 24, 37).
The particular statistics we matched to create our texture

families are surely not represented fully and only in V2, and this
may explain why the reported difference in selectivity and tolerance
between V1 and V2, although robust, is not qualitative. In partic-
ular, these statistics include both the local correlation of oriented
linear filter responses (equivalent to a partial representation of
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Fig. 5. Quantifying representational differences between V1 and V2.
(A) Schematic of sample (black) and family (red) classification. For sample
classification, holdout data were classified among the 15 different samples
for each family. Performance for each of the families was then averaged
together to get total performance. For family classification, the decoder was
trained on multiple samples within each family, and then used to classify
held out data into each of the 15 different families. (B) Comparison of pro-
portion of correct classification of V1 and V2 populations for family classifi-
cation (red) and sample classification (black). We computed performance
measures for both tasks using five different population sizes, indicated by the
dot size (n = 1, n = 3, n = 10, n = 30, and n = 100). Chance performance for both
tasks was 1/15. Error bars represent 95% confidence intervals of the boot-
strapped distribution over included neurons and cross-validation partitioning.
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and is responsible for these perceptual phenomena, then the
responses of populations of V2 neurons to statistically matched
stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing

responses of a collection of V1 and V2 neurons to images of
synthetic texture, generated to match the statistics of different
texture “families.” V2 responses across families of statistically
matched stimuli were more homogeneous than V1 responses,
reflecting an increased tolerance that was only partly explained
by the larger size of their receptive fields. Using a neural pop-
ulation decoder, we found V2 was better than V1 at discrimi-
nating between-family images matched for different statistics and
worse at discriminating within-family images matched for the
same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs

to define 15 different texture families. These images were per-
ceptually distinct, and human sensitivity to their higher order
statistics spanned a range that was similar to the range found over
a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.

Single Neuron Responses to Naturalistic Texture Stimuli.We recorded
the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
macaque monkeys to these texture stimuli. We presented the stimuli
within a 4° aperture centered on the receptive field of each recorded
neuron. Each of the 225 different stimuli appeared 20 times in
pseudorandom order and was displayed for 100 ms, separated
by 100 ms of uniform gray at the mean luminance. The same
stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses

obtained from spectrally matched (phase-scrambled) noise stimuli
(19). Here, we present a new analysis of these data, which seeks to
determine the relative selectivity and tolerance of V1 and V2
neurons for the different texture families and the image samples
drawn from those families, respectively.
Texture stimuli elicited selective responses in most V1 and V2

neurons (Fig. 1 B and C). Neurons in both V1 and V2 displayed a
characteristic firing rate for each image, with some variability
across presentations. For most texture families, firing rates of V1
neurons were highly variable across the samples (Fig. 1B). In
contrast, V2 neurons exhibited similar firing rates across samples,
as well as more consistent differences in average firing rate across
families (Fig. 1C); that is, V2 neurons appeared to be more tol-
erant to the variations in image detail that occur across samples
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus.
The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.
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We also made measurements on a subset of cells in which the stim-
uli were confined to each neuron’s classical receptive field. In V1, 
the modulation was near 0 for both classical receptive field–matched 
and large stimuli, though there was a small but significant reduction 
in modulation for the smaller stimuli (P < 0.05, t-test, Fig. 3c). In 
V2, there was a robust but incomplete reduction in modulation for 
the smaller stimuli (P < 0.0001, t-test, Fig. 3d), suggesting that the 
modulation in V2 depended partly, but not entirely, on interactions 
between receptive field center and surround. We found no evidence 
for a relationship in V2 between the modulation and commonly char-
acterized properties of early visual neurons, including surround sup-
pression, orientation tuning bandwidth, preferred spatial frequency, 
spatial frequency tuning bandwidth or parameters of the contrast 

sensitivity function (c50 and exponent) (all correlations P > 0.05). We 
therefore believe that our measurements reveal a hitherto unrecog-
nized dimension of visual processing in macaque V2.

Differentiating V2 from V1 in human
Given the reliable effect of higher-order image statistics on the 
responses of V2 neurons, we wondered if similar effects could be 
observed in humans using fMRI, which can capture large-scale 
 differential responses across visual areas24. We presented alternat-
ing blocks of naturalistic and noise stimuli, one texture family at 
a time, in the near-peripheral visual field while measuring blood-
oxygenation level dependent (BOLD) fMRI responses in visual 
cortex. Subjects performed a demanding task at the center of gaze 

Figure 2 Neuronal responses to naturalistic textures differentiate V2 from V1 in macaques. (a) Time course of firing rate for three single units in V1 
(green) and V2 (blue) to images of naturalistic texture (dark) and spectrally matched noise (light). Thickness of lines indicates s.e.m. across texture 
families. Black bar indicates the presentation of the stimulus; gray bar indicates the presentation of the subsequent stimulus. (b) Time course of firing 
rate averaged across neurons in V1 and V2. Each neuron’s firing rate was normalized by its maximum before averaging. Thickness of lines indicates 
s.e.m. across neurons. (c) Modulation index, computed as the difference between the response to naturalistic and the response to noise, divided by  
their sum. Modulation was computed separately for each neuron and texture family, then averaged across all neurons and families. Thickness of blue 
and green lines indicates s.e.m. across neurons. Thickness of gray shaded region indicates the 2.5th and 97.5th percentiles of the null distribution  
of modulation expected at each time point due to chance. (d) Firing rates for three single units in V1 (green) and V2 (blue) to naturalistic (dark dots) 
and noise (light dots), separately for the 15 texture families. Families are sorted according to the ranking in e. Gray bars connecting points are only  
for visualization of the differential response. Modulation indices (averaged across texture families) are reported in the upper right of each panel. Error 
bars indicate s.e.m. across the 15 samples of each texture family. (e) Diversity in modulation across texture families, averaged across all neurons.  
Error bars indicate s.e.m. across neurons. Gray bar indicates 2.5th and 97.5th percentiles of the null distribution of modulation expected due to 
chance. (f) Distributions of modulation indices across single neurons in V1 and V2. For each neuron, the modulation index for each texture family was 
computed on firing rates averaged in a 100-ms window following response onset, and modulation was then averaged across families.
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Discussion
We recorded population responses from area V1 of awake, task-
engaged monkeys, and investigated how the correlation structure
of V1 activity depends on stimulus content. Our analysis estab-
lished that, upon presentation of natural scenes, the fine struc-
ture of correlations was stimulus specific. Crucially, by designing
synthetic images with controlled statistical structure, we dem-
onstrated that the stimulus specificity of SCCs was dependent on
stimulus complexity: stimuli characterized by low-level structure
elicited reduced stimulus specificity in SCCs, while images
characterized by both low- and high-level structure elicited in-
creased stimulus specificity. We developed a CRM technique
and proved that the fine structure of SCCs could not be trivially
explained by fluctuations in firing rates. Moreover, a decoding
analysis confirmed that knowledge of the correlation structure
was beneficial for decoding information on stimulus identity. We
argued that the stimulus dependence of SCCs is a natural con-
sequence of top-down modulations in the ventral stream: infer-
ences about high-level structure of images provide context for
the interpretation of low-level structure through the internal
dynamics of the cortex. Finally, we showed that, while the
qualitative changes in stimulus specificity of SCCs could be
explained by a probabilistic hierarchical model of perceptual
inference, they could not be accounted for by a range of other
phenomenological models, based on either finite data effects or
simple collective modulations of responses.
Parallel recordings from multiple neurons permit the investigation

of higher-order statistics of neuronal responses. Hence, the assess-
ment of SCCs, commonly addressed as “noise correlations,” has be-
come a central topic in neuroscience (11, 13, 14, 52). Although
measurement of SCCs only concern second-order statistics, accurate
measurement (9, 13) and interpretation of variations in SCCs (53)
proved to be challenging. Factors that affect SCC estimation include
task design, wakefulness, eye movements, firing rate, cortical distance,
tuning similarity, spike isolation, and spike width (13, 47, 48). We
used a paradigm that permits a large number of repetitions, which
limits sample variance in SCC measurements. Although anesthesia
can permit a larger number of repetitions and/or a larger stimulus set,
network-wide changes in the internal dynamics can introduce artificial
correlation structures (19, 54). Using awake and task-engaged mon-
keys eliminates this confound (35). Eye movements have been shown
to contribute to correlations in the visual cortex (55). We introduced
an analysis that sought to reproduce our results under conditions in

which saccades and microsaccades are minimized. This analysis
confirmed a higher SCC specificity for stimuli with high-level struc-
ture immediately after the onset of the attentional cue when the
occurrence of eye movements dwindles. We developed the CRM to
control for firing rate changes across conditions and demonstrated its
power on synthetic data before applying it to physiological data. This
analysis confirmed that our conclusions on stimulus dependence of
correlations were not a consequence of changing firing rates.
Earlier studies in mice used two-photon calcium imaging to

characterize the changes in correlation structure that arise as a re-
sult of changes in stimulus statistics (14, 16), which extended earlier
observations on the effects of stimulus statistics on higher-order
single-cell statistics (52, 56). However, in these studies, pairwise
correlations were assessed in response to movies and sequences of
moving and static gratings, making it impossible to test the pre-
dictions of hierarchical inference on responses to individual stimuli.
Our approach can be regarded as an extension of earlier work

investigating the patterns of mean responses in the hierarchy of
the visual cortex (40). It has been shown that variance in mean
responses in V2 can be well predicted by variations in factors that
determine the statistics necessary for the generation of natural
textures, while variations in mean responses in V1 can be
predicted by variations in statistics at the level of indepen-
dent Gabor-like edge filters. Similarly, contextual modulation of
V1 activity by top-down influences from V2 neurons was dem-
onstrated when high-level inferences were made in artificial
images (24, 25). Furthermore, V1 was shown to receive delayed
top-down influence relative to V2 (24). The long time window we
used in our analysis to limit measurement noise was not effective
to investigate such temporal dynamics in the interactions. Nev-
ertheless, these observations complement our results and are
fully compatible with probabilistic inference in a hierarchical
internal model of natural images, in which mean responses
correspond to the most probable interpretation of the stimulus.
Probabilistic computations require the representation of

probability distributions. Representation of probability distributions
was proposed to be achieved by stochastic sampling (32, 44), which
interprets response variability as a direct consequence of perceptual
uncertainty. The stochastic sampling framework generalizes natu-
rally to hierarchical computations (32). Recently, it was shown that
stimulus dependence of both membrane potential and spike count
variability in V1 can be predicted by a model of natural images (30).
This model, however, lacked the hierarchical structure presented
here and was therefore unable to account for stimulus-dependent
changes in correlation patterns. However, it provided a simple but
important demonstration of contextual modulation of V1 responses:
the assessment of stimulus contrast for a complete image patch af-
fected the interpretation of local image elements (57). Such con-
textual modulation was shown to result in divisive normalization
(39). Divisive normalization and more specifically surround sup-
pression (58) are algorithmic motifs that can realize the computa-
tional principles put forward in our study. Such algorithmic motifs
provide the nervous system with tools to calculate the quantities
required by the functional model proposed here, and thus can
highlight how processes within V1 can contribute to hierarchical
inference. Our results fit naturally in the sampling framework by
assuming that neural activity patterns represent multivariate samples
from the probability distributions both at the level of V1 and higher-
level areas, for example, V2 (Fig. 1).

Alternative Interpretations. Patterns in higher-order statistics of
neuronal responses beyond the mean activity, namely single-cell
variability and SCCs, have been observed in association with task-
related modulatory effects, such as those driven by attention (18,
19, 59) and in association with stimulus-related modulatory effects,
such as those occurring during the perception of natural scenes (14,
52, 56). Computations underlying both of these processes invoke
high-level inferences: inference of task variables in the case of at-
tention and inference of high-level stimulus features, for example,
object identity, in the case of perception. In both cases, inference of
high-level variables breaks the feedforward processing hierarchy in
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Fig. 7. Comparison of stimulus specificity of correlation patterns evoked by
stimuli with different levels of statistical structure. (A) Condition A, a set of
synthetic image patches in which filter co-occurrences define a texture
structure (HL-synthetic stimuli); condition B, a set of synthetic image patches
generated from a V1 model of images (LL-synthetic stimuli). (B) Stimulus
specificity of firing rate responses (Top) and SCC patterns (Bottom) in the
original (unmatched) data. While correlations show higher specificity for HL-
synthetic images, specificity of firing rate responses is also higher in the first
condition. The baseline for correlation dissimilarity is set to the baseline used
in Fig. 5. (C) Firing and correlation dissimilarities after applying the CRM
procedure. CRM eliminates stimulus specificity of firing rate responses, but
the residual dissimilarity of SCCs is still significantly higher for HL-synthetic
stimuli than that for LL-synthetic stimuli.
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We recorded population responses from area V1 of awake, task-
engaged monkeys, and investigated how the correlation structure
of V1 activity depends on stimulus content. Our analysis estab-
lished that, upon presentation of natural scenes, the fine struc-
ture of correlations was stimulus specific. Crucially, by designing
synthetic images with controlled statistical structure, we dem-
onstrated that the stimulus specificity of SCCs was dependent on
stimulus complexity: stimuli characterized by low-level structure
elicited reduced stimulus specificity in SCCs, while images
characterized by both low- and high-level structure elicited in-
creased stimulus specificity. We developed a CRM technique
and proved that the fine structure of SCCs could not be trivially
explained by fluctuations in firing rates. Moreover, a decoding
analysis confirmed that knowledge of the correlation structure
was beneficial for decoding information on stimulus identity. We
argued that the stimulus dependence of SCCs is a natural con-
sequence of top-down modulations in the ventral stream: infer-
ences about high-level structure of images provide context for
the interpretation of low-level structure through the internal
dynamics of the cortex. Finally, we showed that, while the
qualitative changes in stimulus specificity of SCCs could be
explained by a probabilistic hierarchical model of perceptual
inference, they could not be accounted for by a range of other
phenomenological models, based on either finite data effects or
simple collective modulations of responses.
Parallel recordings from multiple neurons permit the investigation

of higher-order statistics of neuronal responses. Hence, the assess-
ment of SCCs, commonly addressed as “noise correlations,” has be-
come a central topic in neuroscience (11, 13, 14, 52). Although
measurement of SCCs only concern second-order statistics, accurate
measurement (9, 13) and interpretation of variations in SCCs (53)
proved to be challenging. Factors that affect SCC estimation include
task design, wakefulness, eye movements, firing rate, cortical distance,
tuning similarity, spike isolation, and spike width (13, 47, 48). We
used a paradigm that permits a large number of repetitions, which
limits sample variance in SCC measurements. Although anesthesia
can permit a larger number of repetitions and/or a larger stimulus set,
network-wide changes in the internal dynamics can introduce artificial
correlation structures (19, 54). Using awake and task-engaged mon-
keys eliminates this confound (35). Eye movements have been shown
to contribute to correlations in the visual cortex (55). We introduced
an analysis that sought to reproduce our results under conditions in

which saccades and microsaccades are minimized. This analysis
confirmed a higher SCC specificity for stimuli with high-level struc-
ture immediately after the onset of the attentional cue when the
occurrence of eye movements dwindles. We developed the CRM to
control for firing rate changes across conditions and demonstrated its
power on synthetic data before applying it to physiological data. This
analysis confirmed that our conclusions on stimulus dependence of
correlations were not a consequence of changing firing rates.
Earlier studies in mice used two-photon calcium imaging to

characterize the changes in correlation structure that arise as a re-
sult of changes in stimulus statistics (14, 16), which extended earlier
observations on the effects of stimulus statistics on higher-order
single-cell statistics (52, 56). However, in these studies, pairwise
correlations were assessed in response to movies and sequences of
moving and static gratings, making it impossible to test the pre-
dictions of hierarchical inference on responses to individual stimuli.
Our approach can be regarded as an extension of earlier work

investigating the patterns of mean responses in the hierarchy of
the visual cortex (40). It has been shown that variance in mean
responses in V2 can be well predicted by variations in factors that
determine the statistics necessary for the generation of natural
textures, while variations in mean responses in V1 can be
predicted by variations in statistics at the level of indepen-
dent Gabor-like edge filters. Similarly, contextual modulation of
V1 activity by top-down influences from V2 neurons was dem-
onstrated when high-level inferences were made in artificial
images (24, 25). Furthermore, V1 was shown to receive delayed
top-down influence relative to V2 (24). The long time window we
used in our analysis to limit measurement noise was not effective
to investigate such temporal dynamics in the interactions. Nev-
ertheless, these observations complement our results and are
fully compatible with probabilistic inference in a hierarchical
internal model of natural images, in which mean responses
correspond to the most probable interpretation of the stimulus.
Probabilistic computations require the representation of

probability distributions. Representation of probability distributions
was proposed to be achieved by stochastic sampling (32, 44), which
interprets response variability as a direct consequence of perceptual
uncertainty. The stochastic sampling framework generalizes natu-
rally to hierarchical computations (32). Recently, it was shown that
stimulus dependence of both membrane potential and spike count
variability in V1 can be predicted by a model of natural images (30).
This model, however, lacked the hierarchical structure presented
here and was therefore unable to account for stimulus-dependent
changes in correlation patterns. However, it provided a simple but
important demonstration of contextual modulation of V1 responses:
the assessment of stimulus contrast for a complete image patch af-
fected the interpretation of local image elements (57). Such con-
textual modulation was shown to result in divisive normalization
(39). Divisive normalization and more specifically surround sup-
pression (58) are algorithmic motifs that can realize the computa-
tional principles put forward in our study. Such algorithmic motifs
provide the nervous system with tools to calculate the quantities
required by the functional model proposed here, and thus can
highlight how processes within V1 can contribute to hierarchical
inference. Our results fit naturally in the sampling framework by
assuming that neural activity patterns represent multivariate samples
from the probability distributions both at the level of V1 and higher-
level areas, for example, V2 (Fig. 1).

Alternative Interpretations. Patterns in higher-order statistics of
neuronal responses beyond the mean activity, namely single-cell
variability and SCCs, have been observed in association with task-
related modulatory effects, such as those driven by attention (18,
19, 59) and in association with stimulus-related modulatory effects,
such as those occurring during the perception of natural scenes (14,
52, 56). Computations underlying both of these processes invoke
high-level inferences: inference of task variables in the case of at-
tention and inference of high-level stimulus features, for example,
object identity, in the case of perception. In both cases, inference of
high-level variables breaks the feedforward processing hierarchy in
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Fig. 7. Comparison of stimulus specificity of correlation patterns evoked by
stimuli with different levels of statistical structure. (A) Condition A, a set of
synthetic image patches in which filter co-occurrences define a texture
structure (HL-synthetic stimuli); condition B, a set of synthetic image patches
generated from a V1 model of images (LL-synthetic stimuli). (B) Stimulus
specificity of firing rate responses (Top) and SCC patterns (Bottom) in the
original (unmatched) data. While correlations show higher specificity for HL-
synthetic images, specificity of firing rate responses is also higher in the first
condition. The baseline for correlation dissimilarity is set to the baseline used
in Fig. 5. (C) Firing and correlation dissimilarities after applying the CRM
procedure. CRM eliminates stimulus specificity of firing rate responses, but
the residual dissimilarity of SCCs is still significantly higher for HL-synthetic
stimuli than that for LL-synthetic stimuli.

8 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1816766116 Bányai et al.

Condition A

scrambled textures

Discussion
We recorded population responses from area V1 of awake, task-
engaged monkeys, and investigated how the correlation structure
of V1 activity depends on stimulus content. Our analysis estab-
lished that, upon presentation of natural scenes, the fine struc-
ture of correlations was stimulus specific. Crucially, by designing
synthetic images with controlled statistical structure, we dem-
onstrated that the stimulus specificity of SCCs was dependent on
stimulus complexity: stimuli characterized by low-level structure
elicited reduced stimulus specificity in SCCs, while images
characterized by both low- and high-level structure elicited in-
creased stimulus specificity. We developed a CRM technique
and proved that the fine structure of SCCs could not be trivially
explained by fluctuations in firing rates. Moreover, a decoding
analysis confirmed that knowledge of the correlation structure
was beneficial for decoding information on stimulus identity. We
argued that the stimulus dependence of SCCs is a natural con-
sequence of top-down modulations in the ventral stream: infer-
ences about high-level structure of images provide context for
the interpretation of low-level structure through the internal
dynamics of the cortex. Finally, we showed that, while the
qualitative changes in stimulus specificity of SCCs could be
explained by a probabilistic hierarchical model of perceptual
inference, they could not be accounted for by a range of other
phenomenological models, based on either finite data effects or
simple collective modulations of responses.
Parallel recordings from multiple neurons permit the investigation

of higher-order statistics of neuronal responses. Hence, the assess-
ment of SCCs, commonly addressed as “noise correlations,” has be-
come a central topic in neuroscience (11, 13, 14, 52). Although
measurement of SCCs only concern second-order statistics, accurate
measurement (9, 13) and interpretation of variations in SCCs (53)
proved to be challenging. Factors that affect SCC estimation include
task design, wakefulness, eye movements, firing rate, cortical distance,
tuning similarity, spike isolation, and spike width (13, 47, 48). We
used a paradigm that permits a large number of repetitions, which
limits sample variance in SCC measurements. Although anesthesia
can permit a larger number of repetitions and/or a larger stimulus set,
network-wide changes in the internal dynamics can introduce artificial
correlation structures (19, 54). Using awake and task-engaged mon-
keys eliminates this confound (35). Eye movements have been shown
to contribute to correlations in the visual cortex (55). We introduced
an analysis that sought to reproduce our results under conditions in

which saccades and microsaccades are minimized. This analysis
confirmed a higher SCC specificity for stimuli with high-level struc-
ture immediately after the onset of the attentional cue when the
occurrence of eye movements dwindles. We developed the CRM to
control for firing rate changes across conditions and demonstrated its
power on synthetic data before applying it to physiological data. This
analysis confirmed that our conclusions on stimulus dependence of
correlations were not a consequence of changing firing rates.
Earlier studies in mice used two-photon calcium imaging to

characterize the changes in correlation structure that arise as a re-
sult of changes in stimulus statistics (14, 16), which extended earlier
observations on the effects of stimulus statistics on higher-order
single-cell statistics (52, 56). However, in these studies, pairwise
correlations were assessed in response to movies and sequences of
moving and static gratings, making it impossible to test the pre-
dictions of hierarchical inference on responses to individual stimuli.
Our approach can be regarded as an extension of earlier work

investigating the patterns of mean responses in the hierarchy of
the visual cortex (40). It has been shown that variance in mean
responses in V2 can be well predicted by variations in factors that
determine the statistics necessary for the generation of natural
textures, while variations in mean responses in V1 can be
predicted by variations in statistics at the level of indepen-
dent Gabor-like edge filters. Similarly, contextual modulation of
V1 activity by top-down influences from V2 neurons was dem-
onstrated when high-level inferences were made in artificial
images (24, 25). Furthermore, V1 was shown to receive delayed
top-down influence relative to V2 (24). The long time window we
used in our analysis to limit measurement noise was not effective
to investigate such temporal dynamics in the interactions. Nev-
ertheless, these observations complement our results and are
fully compatible with probabilistic inference in a hierarchical
internal model of natural images, in which mean responses
correspond to the most probable interpretation of the stimulus.
Probabilistic computations require the representation of

probability distributions. Representation of probability distributions
was proposed to be achieved by stochastic sampling (32, 44), which
interprets response variability as a direct consequence of perceptual
uncertainty. The stochastic sampling framework generalizes natu-
rally to hierarchical computations (32). Recently, it was shown that
stimulus dependence of both membrane potential and spike count
variability in V1 can be predicted by a model of natural images (30).
This model, however, lacked the hierarchical structure presented
here and was therefore unable to account for stimulus-dependent
changes in correlation patterns. However, it provided a simple but
important demonstration of contextual modulation of V1 responses:
the assessment of stimulus contrast for a complete image patch af-
fected the interpretation of local image elements (57). Such con-
textual modulation was shown to result in divisive normalization
(39). Divisive normalization and more specifically surround sup-
pression (58) are algorithmic motifs that can realize the computa-
tional principles put forward in our study. Such algorithmic motifs
provide the nervous system with tools to calculate the quantities
required by the functional model proposed here, and thus can
highlight how processes within V1 can contribute to hierarchical
inference. Our results fit naturally in the sampling framework by
assuming that neural activity patterns represent multivariate samples
from the probability distributions both at the level of V1 and higher-
level areas, for example, V2 (Fig. 1).

Alternative Interpretations. Patterns in higher-order statistics of
neuronal responses beyond the mean activity, namely single-cell
variability and SCCs, have been observed in association with task-
related modulatory effects, such as those driven by attention (18,
19, 59) and in association with stimulus-related modulatory effects,
such as those occurring during the perception of natural scenes (14,
52, 56). Computations underlying both of these processes invoke
high-level inferences: inference of task variables in the case of at-
tention and inference of high-level stimulus features, for example,
object identity, in the case of perception. In both cases, inference of
high-level variables breaks the feedforward processing hierarchy in
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Fig. 7. Comparison of stimulus specificity of correlation patterns evoked by
stimuli with different levels of statistical structure. (A) Condition A, a set of
synthetic image patches in which filter co-occurrences define a texture
structure (HL-synthetic stimuli); condition B, a set of synthetic image patches
generated from a V1 model of images (LL-synthetic stimuli). (B) Stimulus
specificity of firing rate responses (Top) and SCC patterns (Bottom) in the
original (unmatched) data. While correlations show higher specificity for HL-
synthetic images, specificity of firing rate responses is also higher in the first
condition. The baseline for correlation dissimilarity is set to the baseline used
in Fig. 5. (C) Firing and correlation dissimilarities after applying the CRM
procedure. CRM eliminates stimulus specificity of firing rate responses, but
the residual dissimilarity of SCCs is still significantly higher for HL-synthetic
stimuli than that for LL-synthetic stimuli.
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Illusory contours

eccentricity, the receptive fields of V1 neurons studied ranged
from 0.3° to 1°, whereas those of V2 neurons ranged from 0.7°
to 2°. As we sought to understand how the same stimuli were
processed by the different cortical areas, we did not vary the size
of the test stimuli.

Fig. 3 presents the findings from a V1S neuron. Fig. 3 a and
c show that this cell responded significantly more to the illusory
contour than to the amodal condition (Fig. 1b) or to all of the
rotated corner disk configurations (Fig. 1 i–l). The illusory
contour elicited a response when it was placed at precisely the
same location at which a real contour elicited the maximum
response (Fig. 3a). However, the response to the illusory contour
appeared at 100 msec after the appearance of the Kanizsa
square, as compared with 45 msec for a real square (Fig. 3d).

We characterized a cell’s illusory contour responsiveness, or
its illusory contour response, by the following two modulation
indices: IC1 ! (Ri " Ra)!(Ri # Ra) and IC2 ! (Ri " Rr)!(Ri # Rr),
where Ri is the response to the illusory contour, Ra is the
response to the amodal condition, and Rr is the response to the

Fig. 1. Stimulus set used in the experiment. (a) Kanizsa figure made up of
four corner discs (pac-men). (b) Amodal figure (a gray square in a black
background partially occluded by a foreground surface with four apertures).
(c) Four circular discs. (d) Line square. (e) White square. ( f) Gray square. (g) Line
Square with four corner discs. (h) White square with four corner discs. (i–l)
Various configurations of the rotated corners. According to Kanizsa’s defini-
tion, amodal presence refers to the completion of part of an object that is not
directly visible because it is covered by another object. In b, we can see a gray
square against a black background behind a gray wall with four apertures. The
amodal contour of the gray square is not as immediately ‘‘visible’’ as the
subjective contour of the Kanizsa figure (a). For a cell selective for horizontal
edges, only the bottom horizontal contour and its neighboring positions
would be placed on the cell’s receptive field in a manner shown in Fig. 2a. For
cells with different orientation preference, each of the stimuli was rotated
accordingly so that the orientation preference of the cell was aligned with the
illusory contour. The five sequences used were: (c, a, c, a), (c, b, c, e), (c, g, c, h),
(m, d, m, f ), and (i, j, k, l), where the symbols stand for the defined above, and
m stands for the gray screen condition. (i, j, k, l) was designed to create the
perception that the four corner discs were rotating independently on screen
in a single trial. Later on, we also tested a sixth sequence, (c, j, c, l).

Fig. 2. a illustrates the spatial relationship between the fixation spot (black
dot), the cell’s receptive field (circle), and the stimulus figure. The cell’s
receptive field was placed in the middle of the illusory contour at the bottom
of the Kanizsa figure, for a cell selective for horizontal orientation. For cells of
other orientations, the stimuli were rotated accordingly so that the contour
was parallel with the preferred orientation of the cell. The stimulus was
presented in ten locations 0.25° apart in successive trials relative to the
receptive field so that the illusory contour was collinear with the ten line
segments as shown in the figure. b illustrates the presentation of the Kanizsa
square sequence, (c, a, c, a), where c is the four circular discs stimulus, and a is
the Kanizsa figure made up of four corner discs.

Fig. 3. a shows the spatial profile of a V1 neuron’s response to the contours
of both real and illusory squares, in a temporal window 100–150 msec after
the square appeared at different spatial placements relative to the receptive
field. This cell responded to the illusory contour when it was at precisely the
same location at which a real contour elicited the maximal response. The cell
also responded significantly better to the illusory contour than to the amodal
contour (t test, p $ 0.003), and did not respond to the rotated corner discs. b
shows the neuron’s response profile to a tiny bar of 0.1° % 0.2° visual angle
placed at different positions along the long-axis of the cell, indicating the
spatial extent of the cell’s receptive field (even when coupled with potential
eye movement jitters) is about 1° visual angle when plotted by a small bar. c
compares the temporal evolution of this cell’s response to the illusory contour,
the amodal contour and the various rotated corner disk controls at the
location where the real contour elicited the maximum response. The response
to the illusory contour emerged at about 100 msec after the illusory square
appeared. The cell responded slightly to the amodal and did not respond to
any of the rotated corner discs. d contrasts this cell’s response to the illusory
contour against its response to the real contours of line square (Fig. 1d), white
square (Fig. 1e ), and gray square (Fig. 1f ). The onset of the response to real
contours was at 45 msec, about 55 msec before the illusory contour response.
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FIGURE 3. Example images of our synthetic training dataset.

Here, Imask_region = Iinput⌦(1�Imask_map)+(Iedit⌦Imask_map)
and ⌦ denotes the element-wise multiplication.
In order to train our model in a GAN setup, the generator

fools the discriminators by minimizing the following loss
functions:

Lwhole_regionadv = �EIedit2S log(Dwhole_region
⇥ (Gedit (Iinput , Imask_map))) (7)

Lmask_regionadv = �EIedit2S log(Dmask_region
⇥ (Gedit (Iinput , Imask_map))) (8)

3) PERCEPTUAL NETWORK

The third block of the editing module is a perceptual network.
It is a pre-trained VGG-19 fixed network [33]. The purpose
of this network is to encourage the generator output, Iedit ,
to have similar feature representation to the ground truth, Igt .
We use a perceptual loss Lperc [34] to penalize the outputs
that is perceptually not reasonable by defining a feature level
distance measure between the intermediate feature maps of
Iedit and Igt based on a pre-trained network (VGG-19 [33]).
Let 'i is the activation map of the ith layer of ', the perceptual
loss is defined as:

Lperc =
X

i

||'i(Iedit ) � 'i(Igt )|| (9)

We exploit the intermediate convolution layer feature maps
(conv_3, conv_4 and conv_5) of VGG-19 (Pre-trained on
ImageNet data [20]) network to get rich structural informa-
tion and thus helps in recovering plausible structure of the
face semantics.
The joint loss function to train the editing module is

defined as:

Lcomp
= �rc(Lrc + Lperc) + �Dwhole_regionL

whole_region
D

+ �Dmask_regionL
mask_region
D + �advwhole_regionL

whole_region
adv

+ �advmask_regionL
mask_region
adv (10)

FIGURE 4. Example images of masks used in our synthetic training
dataset.

We have set the weight parameters as �rc = 100,
�Dwhole_region = 0.3, �Dmask_region = 0.7, �advwhole_region = 0.3 and
�advmask_region = 0.7. Lcomp helps in generating natural looking,
structurally consistent and perceptually plausible output.

IV. EXPERIMENTS
In this section, we present synthetic dataset creation, training
details of our model and comparison of our method visually
and quantitatively with other state-of-the-art image editing
approaches. Moreover, in the last part of this section we
provide ablation studies of our model.

A. SYNTHETIC DATASET GENERATION
There is no publicly available dataset that contains facial
image pairs with and without mask object to train our model
in a supervised manner. We construct a synthetic dataset
of 10k images using publicly available CelebFaces Attributes
Dataset (CelebA) [19]. CelebA is a large-scale face attributes
dataset with more than 200K celebrity images. We have used
50 kind of masks of different sizes, shapes, colors and struc-
ture in our synthetic dataset. Some of the examples of facial
masks in our dataset are shown in Figure 4. To create synthetic
samples, we first align the faces using eye-coordinates for
all images using dlib [35]. Then we randomly place mask
on face using Adobe Photoshop CC 2018. We also generate
the corresponding binary map for the mask. Figure 3 shows a
couple of examples of our synthetic dataset.
For fair comparison, we have trained current state-

of-the-art approaches Iizuka et al. [6], Yu et al. [9],
EdgeConnect [11] and MRGAN [8] using our synthetic
dataset. We also provide the object binary map generated by
our map module along with input image both at training and
inference stages because all these methods assume that object
binary map is given.

B. TRAINING DETAILS
For training of themapmodule, we have fed input image Iinput
into the network and generate a binary map Imask_map that is
close to the target binary map Itm. The generated binary map
Imask_map along with input image, Iinput , is then fed into the
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Here, Imask_region = Iinput⌦(1�Imask_map)+(Iedit⌦Imask_map)
and ⌦ denotes the element-wise multiplication.
In order to train our model in a GAN setup, the generator

fools the discriminators by minimizing the following loss
functions:

Lwhole_regionadv = �EIedit2S log(Dwhole_region
⇥ (Gedit (Iinput , Imask_map))) (7)

Lmask_regionadv = �EIedit2S log(Dmask_region
⇥ (Gedit (Iinput , Imask_map))) (8)

3) PERCEPTUAL NETWORK

The third block of the editing module is a perceptual network.
It is a pre-trained VGG-19 fixed network [33]. The purpose
of this network is to encourage the generator output, Iedit ,
to have similar feature representation to the ground truth, Igt .
We use a perceptual loss Lperc [34] to penalize the outputs
that is perceptually not reasonable by defining a feature level
distance measure between the intermediate feature maps of
Iedit and Igt based on a pre-trained network (VGG-19 [33]).
Let 'i is the activation map of the ith layer of ', the perceptual
loss is defined as:
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We exploit the intermediate convolution layer feature maps
(conv_3, conv_4 and conv_5) of VGG-19 (Pre-trained on
ImageNet data [20]) network to get rich structural informa-
tion and thus helps in recovering plausible structure of the
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The joint loss function to train the editing module is
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We have set the weight parameters as �rc = 100,
�Dwhole_region = 0.3, �Dmask_region = 0.7, �advwhole_region = 0.3 and
�advmask_region = 0.7. Lcomp helps in generating natural looking,
structurally consistent and perceptually plausible output.

IV. EXPERIMENTS
In this section, we present synthetic dataset creation, training
details of our model and comparison of our method visually
and quantitatively with other state-of-the-art image editing
approaches. Moreover, in the last part of this section we
provide ablation studies of our model.

A. SYNTHETIC DATASET GENERATION
There is no publicly available dataset that contains facial
image pairs with and without mask object to train our model
in a supervised manner. We construct a synthetic dataset
of 10k images using publicly available CelebFaces Attributes
Dataset (CelebA) [19]. CelebA is a large-scale face attributes
dataset with more than 200K celebrity images. We have used
50 kind of masks of different sizes, shapes, colors and struc-
ture in our synthetic dataset. Some of the examples of facial
masks in our dataset are shown in Figure 4. To create synthetic
samples, we first align the faces using eye-coordinates for
all images using dlib [35]. Then we randomly place mask
on face using Adobe Photoshop CC 2018. We also generate
the corresponding binary map for the mask. Figure 3 shows a
couple of examples of our synthetic dataset.
For fair comparison, we have trained current state-

of-the-art approaches Iizuka et al. [6], Yu et al. [9],
EdgeConnect [11] and MRGAN [8] using our synthetic
dataset. We also provide the object binary map generated by
our map module along with input image both at training and
inference stages because all these methods assume that object
binary map is given.

B. TRAINING DETAILS
For training of themapmodule, we have fed input image Iinput
into the network and generate a binary map Imask_map that is
close to the target binary map Itm. The generated binary map
Imask_map along with input image, Iinput , is then fed into the
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➡ contextual information defines a prior 
➡ image imprinting in TDVAE 
➡ illusory contour responses in visual cortex

eccentricity, the receptive fields of V1 neurons studied ranged
from 0.3° to 1°, whereas those of V2 neurons ranged from 0.7°
to 2°. As we sought to understand how the same stimuli were
processed by the different cortical areas, we did not vary the size
of the test stimuli.

Fig. 3 presents the findings from a V1S neuron. Fig. 3 a and
c show that this cell responded significantly more to the illusory
contour than to the amodal condition (Fig. 1b) or to all of the
rotated corner disk configurations (Fig. 1 i–l). The illusory
contour elicited a response when it was placed at precisely the
same location at which a real contour elicited the maximum
response (Fig. 3a). However, the response to the illusory contour
appeared at 100 msec after the appearance of the Kanizsa
square, as compared with 45 msec for a real square (Fig. 3d).

We characterized a cell’s illusory contour responsiveness, or
its illusory contour response, by the following two modulation
indices: IC1 ! (Ri " Ra)!(Ri # Ra) and IC2 ! (Ri " Rr)!(Ri # Rr),
where Ri is the response to the illusory contour, Ra is the
response to the amodal condition, and Rr is the response to the

Fig. 1. Stimulus set used in the experiment. (a) Kanizsa figure made up of
four corner discs (pac-men). (b) Amodal figure (a gray square in a black
background partially occluded by a foreground surface with four apertures).
(c) Four circular discs. (d) Line square. (e) White square. ( f) Gray square. (g) Line
Square with four corner discs. (h) White square with four corner discs. (i–l)
Various configurations of the rotated corners. According to Kanizsa’s defini-
tion, amodal presence refers to the completion of part of an object that is not
directly visible because it is covered by another object. In b, we can see a gray
square against a black background behind a gray wall with four apertures. The
amodal contour of the gray square is not as immediately ‘‘visible’’ as the
subjective contour of the Kanizsa figure (a). For a cell selective for horizontal
edges, only the bottom horizontal contour and its neighboring positions
would be placed on the cell’s receptive field in a manner shown in Fig. 2a. For
cells with different orientation preference, each of the stimuli was rotated
accordingly so that the orientation preference of the cell was aligned with the
illusory contour. The five sequences used were: (c, a, c, a), (c, b, c, e), (c, g, c, h),
(m, d, m, f ), and (i, j, k, l), where the symbols stand for the defined above, and
m stands for the gray screen condition. (i, j, k, l) was designed to create the
perception that the four corner discs were rotating independently on screen
in a single trial. Later on, we also tested a sixth sequence, (c, j, c, l).

Fig. 2. a illustrates the spatial relationship between the fixation spot (black
dot), the cell’s receptive field (circle), and the stimulus figure. The cell’s
receptive field was placed in the middle of the illusory contour at the bottom
of the Kanizsa figure, for a cell selective for horizontal orientation. For cells of
other orientations, the stimuli were rotated accordingly so that the contour
was parallel with the preferred orientation of the cell. The stimulus was
presented in ten locations 0.25° apart in successive trials relative to the
receptive field so that the illusory contour was collinear with the ten line
segments as shown in the figure. b illustrates the presentation of the Kanizsa
square sequence, (c, a, c, a), where c is the four circular discs stimulus, and a is
the Kanizsa figure made up of four corner discs.

Fig. 3. a shows the spatial profile of a V1 neuron’s response to the contours
of both real and illusory squares, in a temporal window 100–150 msec after
the square appeared at different spatial placements relative to the receptive
field. This cell responded to the illusory contour when it was at precisely the
same location at which a real contour elicited the maximal response. The cell
also responded significantly better to the illusory contour than to the amodal
contour (t test, p $ 0.003), and did not respond to the rotated corner discs. b
shows the neuron’s response profile to a tiny bar of 0.1° % 0.2° visual angle
placed at different positions along the long-axis of the cell, indicating the
spatial extent of the cell’s receptive field (even when coupled with potential
eye movement jitters) is about 1° visual angle when plotted by a small bar. c
compares the temporal evolution of this cell’s response to the illusory contour,
the amodal contour and the various rotated corner disk controls at the
location where the real contour elicited the maximum response. The response
to the illusory contour emerged at about 100 msec after the illusory square
appeared. The cell responded slightly to the amodal and did not respond to
any of the rotated corner discs. d contrasts this cell’s response to the illusory
contour against its response to the real contours of line square (Fig. 1d), white
square (Fig. 1e ), and gray square (Fig. 1f ). The onset of the response to real
contours was at 45 msec, about 55 msec before the illusory contour response.
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Discussion
We recorded population responses from area V1 of awake, task-
engaged monkeys, and investigated how the correlation structure
of V1 activity depends on stimulus content. Our analysis estab-
lished that, upon presentation of natural scenes, the fine struc-
ture of correlations was stimulus specific. Crucially, by designing
synthetic images with controlled statistical structure, we dem-
onstrated that the stimulus specificity of SCCs was dependent on
stimulus complexity: stimuli characterized by low-level structure
elicited reduced stimulus specificity in SCCs, while images
characterized by both low- and high-level structure elicited in-
creased stimulus specificity. We developed a CRM technique
and proved that the fine structure of SCCs could not be trivially
explained by fluctuations in firing rates. Moreover, a decoding
analysis confirmed that knowledge of the correlation structure
was beneficial for decoding information on stimulus identity. We
argued that the stimulus dependence of SCCs is a natural con-
sequence of top-down modulations in the ventral stream: infer-
ences about high-level structure of images provide context for
the interpretation of low-level structure through the internal
dynamics of the cortex. Finally, we showed that, while the
qualitative changes in stimulus specificity of SCCs could be
explained by a probabilistic hierarchical model of perceptual
inference, they could not be accounted for by a range of other
phenomenological models, based on either finite data effects or
simple collective modulations of responses.
Parallel recordings from multiple neurons permit the investigation

of higher-order statistics of neuronal responses. Hence, the assess-
ment of SCCs, commonly addressed as “noise correlations,” has be-
come a central topic in neuroscience (11, 13, 14, 52). Although
measurement of SCCs only concern second-order statistics, accurate
measurement (9, 13) and interpretation of variations in SCCs (53)
proved to be challenging. Factors that affect SCC estimation include
task design, wakefulness, eye movements, firing rate, cortical distance,
tuning similarity, spike isolation, and spike width (13, 47, 48). We
used a paradigm that permits a large number of repetitions, which
limits sample variance in SCC measurements. Although anesthesia
can permit a larger number of repetitions and/or a larger stimulus set,
network-wide changes in the internal dynamics can introduce artificial
correlation structures (19, 54). Using awake and task-engaged mon-
keys eliminates this confound (35). Eye movements have been shown
to contribute to correlations in the visual cortex (55). We introduced
an analysis that sought to reproduce our results under conditions in

which saccades and microsaccades are minimized. This analysis
confirmed a higher SCC specificity for stimuli with high-level struc-
ture immediately after the onset of the attentional cue when the
occurrence of eye movements dwindles. We developed the CRM to
control for firing rate changes across conditions and demonstrated its
power on synthetic data before applying it to physiological data. This
analysis confirmed that our conclusions on stimulus dependence of
correlations were not a consequence of changing firing rates.
Earlier studies in mice used two-photon calcium imaging to

characterize the changes in correlation structure that arise as a re-
sult of changes in stimulus statistics (14, 16), which extended earlier
observations on the effects of stimulus statistics on higher-order
single-cell statistics (52, 56). However, in these studies, pairwise
correlations were assessed in response to movies and sequences of
moving and static gratings, making it impossible to test the pre-
dictions of hierarchical inference on responses to individual stimuli.
Our approach can be regarded as an extension of earlier work

investigating the patterns of mean responses in the hierarchy of
the visual cortex (40). It has been shown that variance in mean
responses in V2 can be well predicted by variations in factors that
determine the statistics necessary for the generation of natural
textures, while variations in mean responses in V1 can be
predicted by variations in statistics at the level of indepen-
dent Gabor-like edge filters. Similarly, contextual modulation of
V1 activity by top-down influences from V2 neurons was dem-
onstrated when high-level inferences were made in artificial
images (24, 25). Furthermore, V1 was shown to receive delayed
top-down influence relative to V2 (24). The long time window we
used in our analysis to limit measurement noise was not effective
to investigate such temporal dynamics in the interactions. Nev-
ertheless, these observations complement our results and are
fully compatible with probabilistic inference in a hierarchical
internal model of natural images, in which mean responses
correspond to the most probable interpretation of the stimulus.
Probabilistic computations require the representation of

probability distributions. Representation of probability distributions
was proposed to be achieved by stochastic sampling (32, 44), which
interprets response variability as a direct consequence of perceptual
uncertainty. The stochastic sampling framework generalizes natu-
rally to hierarchical computations (32). Recently, it was shown that
stimulus dependence of both membrane potential and spike count
variability in V1 can be predicted by a model of natural images (30).
This model, however, lacked the hierarchical structure presented
here and was therefore unable to account for stimulus-dependent
changes in correlation patterns. However, it provided a simple but
important demonstration of contextual modulation of V1 responses:
the assessment of stimulus contrast for a complete image patch af-
fected the interpretation of local image elements (57). Such con-
textual modulation was shown to result in divisive normalization
(39). Divisive normalization and more specifically surround sup-
pression (58) are algorithmic motifs that can realize the computa-
tional principles put forward in our study. Such algorithmic motifs
provide the nervous system with tools to calculate the quantities
required by the functional model proposed here, and thus can
highlight how processes within V1 can contribute to hierarchical
inference. Our results fit naturally in the sampling framework by
assuming that neural activity patterns represent multivariate samples
from the probability distributions both at the level of V1 and higher-
level areas, for example, V2 (Fig. 1).

Alternative Interpretations. Patterns in higher-order statistics of
neuronal responses beyond the mean activity, namely single-cell
variability and SCCs, have been observed in association with task-
related modulatory effects, such as those driven by attention (18,
19, 59) and in association with stimulus-related modulatory effects,
such as those occurring during the perception of natural scenes (14,
52, 56). Computations underlying both of these processes invoke
high-level inferences: inference of task variables in the case of at-
tention and inference of high-level stimulus features, for example,
object identity, in the case of perception. In both cases, inference of
high-level variables breaks the feedforward processing hierarchy in
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Fig. 7. Comparison of stimulus specificity of correlation patterns evoked by
stimuli with different levels of statistical structure. (A) Condition A, a set of
synthetic image patches in which filter co-occurrences define a texture
structure (HL-synthetic stimuli); condition B, a set of synthetic image patches
generated from a V1 model of images (LL-synthetic stimuli). (B) Stimulus
specificity of firing rate responses (Top) and SCC patterns (Bottom) in the
original (unmatched) data. While correlations show higher specificity for HL-
synthetic images, specificity of firing rate responses is also higher in the first
condition. The baseline for correlation dissimilarity is set to the baseline used
in Fig. 5. (C) Firing and correlation dissimilarities after applying the CRM
procedure. CRM eliminates stimulus specificity of firing rate responses, but
the residual dissimilarity of SCCs is still significantly higher for HL-synthetic
stimuli than that for LL-synthetic stimuli.
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textures

Discussion
We recorded population responses from area V1 of awake, task-
engaged monkeys, and investigated how the correlation structure
of V1 activity depends on stimulus content. Our analysis estab-
lished that, upon presentation of natural scenes, the fine struc-
ture of correlations was stimulus specific. Crucially, by designing
synthetic images with controlled statistical structure, we dem-
onstrated that the stimulus specificity of SCCs was dependent on
stimulus complexity: stimuli characterized by low-level structure
elicited reduced stimulus specificity in SCCs, while images
characterized by both low- and high-level structure elicited in-
creased stimulus specificity. We developed a CRM technique
and proved that the fine structure of SCCs could not be trivially
explained by fluctuations in firing rates. Moreover, a decoding
analysis confirmed that knowledge of the correlation structure
was beneficial for decoding information on stimulus identity. We
argued that the stimulus dependence of SCCs is a natural con-
sequence of top-down modulations in the ventral stream: infer-
ences about high-level structure of images provide context for
the interpretation of low-level structure through the internal
dynamics of the cortex. Finally, we showed that, while the
qualitative changes in stimulus specificity of SCCs could be
explained by a probabilistic hierarchical model of perceptual
inference, they could not be accounted for by a range of other
phenomenological models, based on either finite data effects or
simple collective modulations of responses.
Parallel recordings from multiple neurons permit the investigation

of higher-order statistics of neuronal responses. Hence, the assess-
ment of SCCs, commonly addressed as “noise correlations,” has be-
come a central topic in neuroscience (11, 13, 14, 52). Although
measurement of SCCs only concern second-order statistics, accurate
measurement (9, 13) and interpretation of variations in SCCs (53)
proved to be challenging. Factors that affect SCC estimation include
task design, wakefulness, eye movements, firing rate, cortical distance,
tuning similarity, spike isolation, and spike width (13, 47, 48). We
used a paradigm that permits a large number of repetitions, which
limits sample variance in SCC measurements. Although anesthesia
can permit a larger number of repetitions and/or a larger stimulus set,
network-wide changes in the internal dynamics can introduce artificial
correlation structures (19, 54). Using awake and task-engaged mon-
keys eliminates this confound (35). Eye movements have been shown
to contribute to correlations in the visual cortex (55). We introduced
an analysis that sought to reproduce our results under conditions in

which saccades and microsaccades are minimized. This analysis
confirmed a higher SCC specificity for stimuli with high-level struc-
ture immediately after the onset of the attentional cue when the
occurrence of eye movements dwindles. We developed the CRM to
control for firing rate changes across conditions and demonstrated its
power on synthetic data before applying it to physiological data. This
analysis confirmed that our conclusions on stimulus dependence of
correlations were not a consequence of changing firing rates.
Earlier studies in mice used two-photon calcium imaging to

characterize the changes in correlation structure that arise as a re-
sult of changes in stimulus statistics (14, 16), which extended earlier
observations on the effects of stimulus statistics on higher-order
single-cell statistics (52, 56). However, in these studies, pairwise
correlations were assessed in response to movies and sequences of
moving and static gratings, making it impossible to test the pre-
dictions of hierarchical inference on responses to individual stimuli.
Our approach can be regarded as an extension of earlier work

investigating the patterns of mean responses in the hierarchy of
the visual cortex (40). It has been shown that variance in mean
responses in V2 can be well predicted by variations in factors that
determine the statistics necessary for the generation of natural
textures, while variations in mean responses in V1 can be
predicted by variations in statistics at the level of indepen-
dent Gabor-like edge filters. Similarly, contextual modulation of
V1 activity by top-down influences from V2 neurons was dem-
onstrated when high-level inferences were made in artificial
images (24, 25). Furthermore, V1 was shown to receive delayed
top-down influence relative to V2 (24). The long time window we
used in our analysis to limit measurement noise was not effective
to investigate such temporal dynamics in the interactions. Nev-
ertheless, these observations complement our results and are
fully compatible with probabilistic inference in a hierarchical
internal model of natural images, in which mean responses
correspond to the most probable interpretation of the stimulus.
Probabilistic computations require the representation of

probability distributions. Representation of probability distributions
was proposed to be achieved by stochastic sampling (32, 44), which
interprets response variability as a direct consequence of perceptual
uncertainty. The stochastic sampling framework generalizes natu-
rally to hierarchical computations (32). Recently, it was shown that
stimulus dependence of both membrane potential and spike count
variability in V1 can be predicted by a model of natural images (30).
This model, however, lacked the hierarchical structure presented
here and was therefore unable to account for stimulus-dependent
changes in correlation patterns. However, it provided a simple but
important demonstration of contextual modulation of V1 responses:
the assessment of stimulus contrast for a complete image patch af-
fected the interpretation of local image elements (57). Such con-
textual modulation was shown to result in divisive normalization
(39). Divisive normalization and more specifically surround sup-
pression (58) are algorithmic motifs that can realize the computa-
tional principles put forward in our study. Such algorithmic motifs
provide the nervous system with tools to calculate the quantities
required by the functional model proposed here, and thus can
highlight how processes within V1 can contribute to hierarchical
inference. Our results fit naturally in the sampling framework by
assuming that neural activity patterns represent multivariate samples
from the probability distributions both at the level of V1 and higher-
level areas, for example, V2 (Fig. 1).

Alternative Interpretations. Patterns in higher-order statistics of
neuronal responses beyond the mean activity, namely single-cell
variability and SCCs, have been observed in association with task-
related modulatory effects, such as those driven by attention (18,
19, 59) and in association with stimulus-related modulatory effects,
such as those occurring during the perception of natural scenes (14,
52, 56). Computations underlying both of these processes invoke
high-level inferences: inference of task variables in the case of at-
tention and inference of high-level stimulus features, for example,
object identity, in the case of perception. In both cases, inference of
high-level variables breaks the feedforward processing hierarchy in
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Fig. 7. Comparison of stimulus specificity of correlation patterns evoked by
stimuli with different levels of statistical structure. (A) Condition A, a set of
synthetic image patches in which filter co-occurrences define a texture
structure (HL-synthetic stimuli); condition B, a set of synthetic image patches
generated from a V1 model of images (LL-synthetic stimuli). (B) Stimulus
specificity of firing rate responses (Top) and SCC patterns (Bottom) in the
original (unmatched) data. While correlations show higher specificity for HL-
synthetic images, specificity of firing rate responses is also higher in the first
condition. The baseline for correlation dissimilarity is set to the baseline used
in Fig. 5. (C) Firing and correlation dissimilarities after applying the CRM
procedure. CRM eliminates stimulus specificity of firing rate responses, but
the residual dissimilarity of SCCs is still significantly higher for HL-synthetic
stimuli than that for LL-synthetic stimuli.
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scrambled textures

Discussion
We recorded population responses from area V1 of awake, task-
engaged monkeys, and investigated how the correlation structure
of V1 activity depends on stimulus content. Our analysis estab-
lished that, upon presentation of natural scenes, the fine struc-
ture of correlations was stimulus specific. Crucially, by designing
synthetic images with controlled statistical structure, we dem-
onstrated that the stimulus specificity of SCCs was dependent on
stimulus complexity: stimuli characterized by low-level structure
elicited reduced stimulus specificity in SCCs, while images
characterized by both low- and high-level structure elicited in-
creased stimulus specificity. We developed a CRM technique
and proved that the fine structure of SCCs could not be trivially
explained by fluctuations in firing rates. Moreover, a decoding
analysis confirmed that knowledge of the correlation structure
was beneficial for decoding information on stimulus identity. We
argued that the stimulus dependence of SCCs is a natural con-
sequence of top-down modulations in the ventral stream: infer-
ences about high-level structure of images provide context for
the interpretation of low-level structure through the internal
dynamics of the cortex. Finally, we showed that, while the
qualitative changes in stimulus specificity of SCCs could be
explained by a probabilistic hierarchical model of perceptual
inference, they could not be accounted for by a range of other
phenomenological models, based on either finite data effects or
simple collective modulations of responses.
Parallel recordings from multiple neurons permit the investigation

of higher-order statistics of neuronal responses. Hence, the assess-
ment of SCCs, commonly addressed as “noise correlations,” has be-
come a central topic in neuroscience (11, 13, 14, 52). Although
measurement of SCCs only concern second-order statistics, accurate
measurement (9, 13) and interpretation of variations in SCCs (53)
proved to be challenging. Factors that affect SCC estimation include
task design, wakefulness, eye movements, firing rate, cortical distance,
tuning similarity, spike isolation, and spike width (13, 47, 48). We
used a paradigm that permits a large number of repetitions, which
limits sample variance in SCC measurements. Although anesthesia
can permit a larger number of repetitions and/or a larger stimulus set,
network-wide changes in the internal dynamics can introduce artificial
correlation structures (19, 54). Using awake and task-engaged mon-
keys eliminates this confound (35). Eye movements have been shown
to contribute to correlations in the visual cortex (55). We introduced
an analysis that sought to reproduce our results under conditions in

which saccades and microsaccades are minimized. This analysis
confirmed a higher SCC specificity for stimuli with high-level struc-
ture immediately after the onset of the attentional cue when the
occurrence of eye movements dwindles. We developed the CRM to
control for firing rate changes across conditions and demonstrated its
power on synthetic data before applying it to physiological data. This
analysis confirmed that our conclusions on stimulus dependence of
correlations were not a consequence of changing firing rates.
Earlier studies in mice used two-photon calcium imaging to

characterize the changes in correlation structure that arise as a re-
sult of changes in stimulus statistics (14, 16), which extended earlier
observations on the effects of stimulus statistics on higher-order
single-cell statistics (52, 56). However, in these studies, pairwise
correlations were assessed in response to movies and sequences of
moving and static gratings, making it impossible to test the pre-
dictions of hierarchical inference on responses to individual stimuli.
Our approach can be regarded as an extension of earlier work

investigating the patterns of mean responses in the hierarchy of
the visual cortex (40). It has been shown that variance in mean
responses in V2 can be well predicted by variations in factors that
determine the statistics necessary for the generation of natural
textures, while variations in mean responses in V1 can be
predicted by variations in statistics at the level of indepen-
dent Gabor-like edge filters. Similarly, contextual modulation of
V1 activity by top-down influences from V2 neurons was dem-
onstrated when high-level inferences were made in artificial
images (24, 25). Furthermore, V1 was shown to receive delayed
top-down influence relative to V2 (24). The long time window we
used in our analysis to limit measurement noise was not effective
to investigate such temporal dynamics in the interactions. Nev-
ertheless, these observations complement our results and are
fully compatible with probabilistic inference in a hierarchical
internal model of natural images, in which mean responses
correspond to the most probable interpretation of the stimulus.
Probabilistic computations require the representation of

probability distributions. Representation of probability distributions
was proposed to be achieved by stochastic sampling (32, 44), which
interprets response variability as a direct consequence of perceptual
uncertainty. The stochastic sampling framework generalizes natu-
rally to hierarchical computations (32). Recently, it was shown that
stimulus dependence of both membrane potential and spike count
variability in V1 can be predicted by a model of natural images (30).
This model, however, lacked the hierarchical structure presented
here and was therefore unable to account for stimulus-dependent
changes in correlation patterns. However, it provided a simple but
important demonstration of contextual modulation of V1 responses:
the assessment of stimulus contrast for a complete image patch af-
fected the interpretation of local image elements (57). Such con-
textual modulation was shown to result in divisive normalization
(39). Divisive normalization and more specifically surround sup-
pression (58) are algorithmic motifs that can realize the computa-
tional principles put forward in our study. Such algorithmic motifs
provide the nervous system with tools to calculate the quantities
required by the functional model proposed here, and thus can
highlight how processes within V1 can contribute to hierarchical
inference. Our results fit naturally in the sampling framework by
assuming that neural activity patterns represent multivariate samples
from the probability distributions both at the level of V1 and higher-
level areas, for example, V2 (Fig. 1).

Alternative Interpretations. Patterns in higher-order statistics of
neuronal responses beyond the mean activity, namely single-cell
variability and SCCs, have been observed in association with task-
related modulatory effects, such as those driven by attention (18,
19, 59) and in association with stimulus-related modulatory effects,
such as those occurring during the perception of natural scenes (14,
52, 56). Computations underlying both of these processes invoke
high-level inferences: inference of task variables in the case of at-
tention and inference of high-level stimulus features, for example,
object identity, in the case of perception. In both cases, inference of
high-level variables breaks the feedforward processing hierarchy in

V2 synthetic V1 synthetic

0.05

0.1

0.15
co

rr
el

at
io

n
di

ss
im

ila
rit

y

***

V2 synthetic V1 synthetic
0.05

0.1

0.15
***

Condition B

V1 synthetic

2

4

6

fir
in

g 
ra

te
di

ss
im

ila
rit

y

Original

***

2

4

6

Matched

n.s.

Condition A

V2 synthetic

A B C

Fig. 7. Comparison of stimulus specificity of correlation patterns evoked by
stimuli with different levels of statistical structure. (A) Condition A, a set of
synthetic image patches in which filter co-occurrences define a texture
structure (HL-synthetic stimuli); condition B, a set of synthetic image patches
generated from a V1 model of images (LL-synthetic stimuli). (B) Stimulus
specificity of firing rate responses (Top) and SCC patterns (Bottom) in the
original (unmatched) data. While correlations show higher specificity for HL-
synthetic images, specificity of firing rate responses is also higher in the first
condition. The baseline for correlation dissimilarity is set to the baseline used
in Fig. 5. (C) Firing and correlation dissimilarities after applying the CRM
procedure. CRM eliminates stimulus specificity of firing rate responses, but
the residual dissimilarity of SCCs is still significantly higher for HL-synthetic
stimuli than that for LL-synthetic stimuli.
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Though the top hidden layers of these goal-driven models end up 
being predictive of IT cortex data, they were not explicitly tuned to 
do so; indeed, they were not exposed to neural data at all during the 
training procedure. Models thus succeeded in generalizing in two 
ways. First, the models were trained for category recognition using 
real-world photographs of objects in one set of semantic catego-
ries, but were tested against neurons on a completely distinct set of  
synthetically created images containing objects whose semantic cat-
egories were entirely non-overlapping with that used in training. 
Second, the objective function being used to train the network was 

not to fit neural data, but instead the downstream behavioral goal 
(for example, categorization). Model parameters were independently 
selected to optimize categorization performance, and were compared 
with neural data only after all intermediate parameters—for example, 
nonlinear model layers—had already been fixed.

Stated another way, within the class of HCNNs, there appear to be 
comparatively few qualitatively distinct, efficiently learnable solutions 
to high-variation object categorization tasks, and perhaps the brain is 
forced over evolutionary and developmental timescales to pick such a 
solution. To test this hypothesis it would be useful to identify non-HCNN  
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Figure 2 Goal-driven optimization yields neurally predictive models of ventral visual cortex. (a) HCNN models that are better optimized to solve 
object categorization produce hidden layer representations that are better able to predict IT neural response variance. The x axis shows performance 
(balanced accuracy; chance is 50%) of the model output features on a high-variation object categorization task. The y axis shows the median single-
site IT response predictivity of the last hidden layer of the HCNN model, over n = 168 IT sites. Site responses are defined as the mean firing rate 
70–170 ms after image onset. Response predictivity is defined as in Box 2. Each dot corresponds to a distinct HCNN model from a large family of such 
models. Models shown as blue circles were selected by random draws from object categorization performance-optimization; black circles show controls 
and earlier published HCNN models; red squares show the development over time of HCNN models produced during an optimization procedure that 
produces a specific HCNN model33. PLOS09, ref. 15; SIFT, shape-invariant feature transform; HMO, optimized HCNN. (b) Actual neural response 
(black trace) versus model predictions of the last hidden layer of an HCNN model (red trace) for a single IT neural site. The x axis shows 1,600 test 
images, none of which were used to fit the model. Images are sorted first by category identity and then by variation amount, with more drastic image 
transformations toward the right within each category block. The y axis represents the response of the neural site and model prediction for each  
test image. This site demonstrated face selectivity in its responses (see inset images), but predictivity results were similar for other IT sites33.  
(c) Comparison of IT and V4 single-site neural response predictivity for various models. Bar height shows median predictivity, taken over 128 predicted 
units in V4 (left panel) or 168 units in IT (right panel). The last hidden layer of the HCNN model best predicts IT responses, while the second-to-last 
hidden layer best predicts V4 responses. (d) Representational dissimilarity matrices (RDMs) for human IT and HCNN model. Blue color indicates 
low values, where representation treats image pairs as similar; red color indicates high values, where representation treats image pairs as distinct. 
Values range from 0 to 1. (e) RDM similarity, measured with Kendall’s TA, between HCNN model layer features and human V1–V3 (left) or human IT 
(right). Gray horizontal bar represents range of performance of the true model given noise and intersubject variation. Error bars are s.e.m. estimated by 
bootstrap resampling of the stimuli used to compute the RDMs. *P < 0.05, **P < 0.001, ****P < 0.0001 for difference from 0. Panels a–c adapted 
from ref. 33, US National Academy of Sciences; d and e adapted from ref. 35, S.M. Khaligh-Razavi and N. Kriegeskorte.
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eccentricity, the receptive fields of V1 neurons studied ranged
from 0.3° to 1°, whereas those of V2 neurons ranged from 0.7°
to 2°. As we sought to understand how the same stimuli were
processed by the different cortical areas, we did not vary the size
of the test stimuli.

Fig. 3 presents the findings from a V1S neuron. Fig. 3 a and
c show that this cell responded significantly more to the illusory
contour than to the amodal condition (Fig. 1b) or to all of the
rotated corner disk configurations (Fig. 1 i–l). The illusory
contour elicited a response when it was placed at precisely the
same location at which a real contour elicited the maximum
response (Fig. 3a). However, the response to the illusory contour
appeared at 100 msec after the appearance of the Kanizsa
square, as compared with 45 msec for a real square (Fig. 3d).

We characterized a cell’s illusory contour responsiveness, or
its illusory contour response, by the following two modulation
indices: IC1 ! (Ri " Ra)!(Ri # Ra) and IC2 ! (Ri " Rr)!(Ri # Rr),
where Ri is the response to the illusory contour, Ra is the
response to the amodal condition, and Rr is the response to the

Fig. 1. Stimulus set used in the experiment. (a) Kanizsa figure made up of
four corner discs (pac-men). (b) Amodal figure (a gray square in a black
background partially occluded by a foreground surface with four apertures).
(c) Four circular discs. (d) Line square. (e) White square. ( f) Gray square. (g) Line
Square with four corner discs. (h) White square with four corner discs. (i–l)
Various configurations of the rotated corners. According to Kanizsa’s defini-
tion, amodal presence refers to the completion of part of an object that is not
directly visible because it is covered by another object. In b, we can see a gray
square against a black background behind a gray wall with four apertures. The
amodal contour of the gray square is not as immediately ‘‘visible’’ as the
subjective contour of the Kanizsa figure (a). For a cell selective for horizontal
edges, only the bottom horizontal contour and its neighboring positions
would be placed on the cell’s receptive field in a manner shown in Fig. 2a. For
cells with different orientation preference, each of the stimuli was rotated
accordingly so that the orientation preference of the cell was aligned with the
illusory contour. The five sequences used were: (c, a, c, a), (c, b, c, e), (c, g, c, h),
(m, d, m, f ), and (i, j, k, l), where the symbols stand for the defined above, and
m stands for the gray screen condition. (i, j, k, l) was designed to create the
perception that the four corner discs were rotating independently on screen
in a single trial. Later on, we also tested a sixth sequence, (c, j, c, l).

Fig. 2. a illustrates the spatial relationship between the fixation spot (black
dot), the cell’s receptive field (circle), and the stimulus figure. The cell’s
receptive field was placed in the middle of the illusory contour at the bottom
of the Kanizsa figure, for a cell selective for horizontal orientation. For cells of
other orientations, the stimuli were rotated accordingly so that the contour
was parallel with the preferred orientation of the cell. The stimulus was
presented in ten locations 0.25° apart in successive trials relative to the
receptive field so that the illusory contour was collinear with the ten line
segments as shown in the figure. b illustrates the presentation of the Kanizsa
square sequence, (c, a, c, a), where c is the four circular discs stimulus, and a is
the Kanizsa figure made up of four corner discs.

Fig. 3. a shows the spatial profile of a V1 neuron’s response to the contours
of both real and illusory squares, in a temporal window 100–150 msec after
the square appeared at different spatial placements relative to the receptive
field. This cell responded to the illusory contour when it was at precisely the
same location at which a real contour elicited the maximal response. The cell
also responded significantly better to the illusory contour than to the amodal
contour (t test, p $ 0.003), and did not respond to the rotated corner discs. b
shows the neuron’s response profile to a tiny bar of 0.1° % 0.2° visual angle
placed at different positions along the long-axis of the cell, indicating the
spatial extent of the cell’s receptive field (even when coupled with potential
eye movement jitters) is about 1° visual angle when plotted by a small bar. c
compares the temporal evolution of this cell’s response to the illusory contour,
the amodal contour and the various rotated corner disk controls at the
location where the real contour elicited the maximum response. The response
to the illusory contour emerged at about 100 msec after the illusory square
appeared. The cell responded slightly to the amodal and did not respond to
any of the rotated corner discs. d contrasts this cell’s response to the illusory
contour against its response to the real contours of line square (Fig. 1d), white
square (Fig. 1e ), and gray square (Fig. 1f ). The onset of the response to real
contours was at 45 msec, about 55 msec before the illusory contour response.
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Discussion
We recorded population responses from area V1 of awake, task-
engaged monkeys, and investigated how the correlation structure
of V1 activity depends on stimulus content. Our analysis estab-
lished that, upon presentation of natural scenes, the fine struc-
ture of correlations was stimulus specific. Crucially, by designing
synthetic images with controlled statistical structure, we dem-
onstrated that the stimulus specificity of SCCs was dependent on
stimulus complexity: stimuli characterized by low-level structure
elicited reduced stimulus specificity in SCCs, while images
characterized by both low- and high-level structure elicited in-
creased stimulus specificity. We developed a CRM technique
and proved that the fine structure of SCCs could not be trivially
explained by fluctuations in firing rates. Moreover, a decoding
analysis confirmed that knowledge of the correlation structure
was beneficial for decoding information on stimulus identity. We
argued that the stimulus dependence of SCCs is a natural con-
sequence of top-down modulations in the ventral stream: infer-
ences about high-level structure of images provide context for
the interpretation of low-level structure through the internal
dynamics of the cortex. Finally, we showed that, while the
qualitative changes in stimulus specificity of SCCs could be
explained by a probabilistic hierarchical model of perceptual
inference, they could not be accounted for by a range of other
phenomenological models, based on either finite data effects or
simple collective modulations of responses.
Parallel recordings from multiple neurons permit the investigation

of higher-order statistics of neuronal responses. Hence, the assess-
ment of SCCs, commonly addressed as “noise correlations,” has be-
come a central topic in neuroscience (11, 13, 14, 52). Although
measurement of SCCs only concern second-order statistics, accurate
measurement (9, 13) and interpretation of variations in SCCs (53)
proved to be challenging. Factors that affect SCC estimation include
task design, wakefulness, eye movements, firing rate, cortical distance,
tuning similarity, spike isolation, and spike width (13, 47, 48). We
used a paradigm that permits a large number of repetitions, which
limits sample variance in SCC measurements. Although anesthesia
can permit a larger number of repetitions and/or a larger stimulus set,
network-wide changes in the internal dynamics can introduce artificial
correlation structures (19, 54). Using awake and task-engaged mon-
keys eliminates this confound (35). Eye movements have been shown
to contribute to correlations in the visual cortex (55). We introduced
an analysis that sought to reproduce our results under conditions in

which saccades and microsaccades are minimized. This analysis
confirmed a higher SCC specificity for stimuli with high-level struc-
ture immediately after the onset of the attentional cue when the
occurrence of eye movements dwindles. We developed the CRM to
control for firing rate changes across conditions and demonstrated its
power on synthetic data before applying it to physiological data. This
analysis confirmed that our conclusions on stimulus dependence of
correlations were not a consequence of changing firing rates.
Earlier studies in mice used two-photon calcium imaging to

characterize the changes in correlation structure that arise as a re-
sult of changes in stimulus statistics (14, 16), which extended earlier
observations on the effects of stimulus statistics on higher-order
single-cell statistics (52, 56). However, in these studies, pairwise
correlations were assessed in response to movies and sequences of
moving and static gratings, making it impossible to test the pre-
dictions of hierarchical inference on responses to individual stimuli.
Our approach can be regarded as an extension of earlier work

investigating the patterns of mean responses in the hierarchy of
the visual cortex (40). It has been shown that variance in mean
responses in V2 can be well predicted by variations in factors that
determine the statistics necessary for the generation of natural
textures, while variations in mean responses in V1 can be
predicted by variations in statistics at the level of indepen-
dent Gabor-like edge filters. Similarly, contextual modulation of
V1 activity by top-down influences from V2 neurons was dem-
onstrated when high-level inferences were made in artificial
images (24, 25). Furthermore, V1 was shown to receive delayed
top-down influence relative to V2 (24). The long time window we
used in our analysis to limit measurement noise was not effective
to investigate such temporal dynamics in the interactions. Nev-
ertheless, these observations complement our results and are
fully compatible with probabilistic inference in a hierarchical
internal model of natural images, in which mean responses
correspond to the most probable interpretation of the stimulus.
Probabilistic computations require the representation of

probability distributions. Representation of probability distributions
was proposed to be achieved by stochastic sampling (32, 44), which
interprets response variability as a direct consequence of perceptual
uncertainty. The stochastic sampling framework generalizes natu-
rally to hierarchical computations (32). Recently, it was shown that
stimulus dependence of both membrane potential and spike count
variability in V1 can be predicted by a model of natural images (30).
This model, however, lacked the hierarchical structure presented
here and was therefore unable to account for stimulus-dependent
changes in correlation patterns. However, it provided a simple but
important demonstration of contextual modulation of V1 responses:
the assessment of stimulus contrast for a complete image patch af-
fected the interpretation of local image elements (57). Such con-
textual modulation was shown to result in divisive normalization
(39). Divisive normalization and more specifically surround sup-
pression (58) are algorithmic motifs that can realize the computa-
tional principles put forward in our study. Such algorithmic motifs
provide the nervous system with tools to calculate the quantities
required by the functional model proposed here, and thus can
highlight how processes within V1 can contribute to hierarchical
inference. Our results fit naturally in the sampling framework by
assuming that neural activity patterns represent multivariate samples
from the probability distributions both at the level of V1 and higher-
level areas, for example, V2 (Fig. 1).

Alternative Interpretations. Patterns in higher-order statistics of
neuronal responses beyond the mean activity, namely single-cell
variability and SCCs, have been observed in association with task-
related modulatory effects, such as those driven by attention (18,
19, 59) and in association with stimulus-related modulatory effects,
such as those occurring during the perception of natural scenes (14,
52, 56). Computations underlying both of these processes invoke
high-level inferences: inference of task variables in the case of at-
tention and inference of high-level stimulus features, for example,
object identity, in the case of perception. In both cases, inference of
high-level variables breaks the feedforward processing hierarchy in
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Fig. 7. Comparison of stimulus specificity of correlation patterns evoked by
stimuli with different levels of statistical structure. (A) Condition A, a set of
synthetic image patches in which filter co-occurrences define a texture
structure (HL-synthetic stimuli); condition B, a set of synthetic image patches
generated from a V1 model of images (LL-synthetic stimuli). (B) Stimulus
specificity of firing rate responses (Top) and SCC patterns (Bottom) in the
original (unmatched) data. While correlations show higher specificity for HL-
synthetic images, specificity of firing rate responses is also higher in the first
condition. The baseline for correlation dissimilarity is set to the baseline used
in Fig. 5. (C) Firing and correlation dissimilarities after applying the CRM
procedure. CRM eliminates stimulus specificity of firing rate responses, but
the residual dissimilarity of SCCs is still significantly higher for HL-synthetic
stimuli than that for LL-synthetic stimuli.
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learned invariances

and is responsible for these perceptual phenomena, then the
responses of populations of V2 neurons to statistically matched
stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing

responses of a collection of V1 and V2 neurons to images of
synthetic texture, generated to match the statistics of different
texture “families.” V2 responses across families of statistically
matched stimuli were more homogeneous than V1 responses,
reflecting an increased tolerance that was only partly explained
by the larger size of their receptive fields. Using a neural pop-
ulation decoder, we found V2 was better than V1 at discrimi-
nating between-family images matched for different statistics and
worse at discriminating within-family images matched for the
same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs

to define 15 different texture families. These images were per-
ceptually distinct, and human sensitivity to their higher order
statistics spanned a range that was similar to the range found over
a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.

Single Neuron Responses to Naturalistic Texture Stimuli.We recorded
the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
macaque monkeys to these texture stimuli. We presented the stimuli
within a 4° aperture centered on the receptive field of each recorded
neuron. Each of the 225 different stimuli appeared 20 times in
pseudorandom order and was displayed for 100 ms, separated
by 100 ms of uniform gray at the mean luminance. The same
stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses

obtained from spectrally matched (phase-scrambled) noise stimuli
(19). Here, we present a new analysis of these data, which seeks to
determine the relative selectivity and tolerance of V1 and V2
neurons for the different texture families and the image samples
drawn from those families, respectively.
Texture stimuli elicited selective responses in most V1 and V2

neurons (Fig. 1 B and C). Neurons in both V1 and V2 displayed a
characteristic firing rate for each image, with some variability
across presentations. For most texture families, firing rates of V1
neurons were highly variable across the samples (Fig. 1B). In
contrast, V2 neurons exhibited similar firing rates across samples,
as well as more consistent differences in average firing rate across
families (Fig. 1C); that is, V2 neurons appeared to be more tol-
erant to the variations in image detail that occur across samples
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus.
The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.
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and is responsible for these perceptual phenomena, then the
responses of populations of V2 neurons to statistically matched
stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing

responses of a collection of V1 and V2 neurons to images of
synthetic texture, generated to match the statistics of different
texture “families.” V2 responses across families of statistically
matched stimuli were more homogeneous than V1 responses,
reflecting an increased tolerance that was only partly explained
by the larger size of their receptive fields. Using a neural pop-
ulation decoder, we found V2 was better than V1 at discrimi-
nating between-family images matched for different statistics and
worse at discriminating within-family images matched for the
same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs

to define 15 different texture families. These images were per-
ceptually distinct, and human sensitivity to their higher order
statistics spanned a range that was similar to the range found over
a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.

Single Neuron Responses to Naturalistic Texture Stimuli.We recorded
the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
macaque monkeys to these texture stimuli. We presented the stimuli
within a 4° aperture centered on the receptive field of each recorded
neuron. Each of the 225 different stimuli appeared 20 times in
pseudorandom order and was displayed for 100 ms, separated
by 100 ms of uniform gray at the mean luminance. The same
stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses

obtained from spectrally matched (phase-scrambled) noise stimuli
(19). Here, we present a new analysis of these data, which seeks to
determine the relative selectivity and tolerance of V1 and V2
neurons for the different texture families and the image samples
drawn from those families, respectively.
Texture stimuli elicited selective responses in most V1 and V2

neurons (Fig. 1 B and C). Neurons in both V1 and V2 displayed a
characteristic firing rate for each image, with some variability
across presentations. For most texture families, firing rates of V1
neurons were highly variable across the samples (Fig. 1B). In
contrast, V2 neurons exhibited similar firing rates across samples,
as well as more consistent differences in average firing rate across
families (Fig. 1C); that is, V2 neurons appeared to be more tol-
erant to the variations in image detail that occur across samples
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus.
The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.
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